U.S. HIGHWAY 60
CORRIDOR \& AT-GRADE RAILWAY CROSSING MASTER PLAN

, CMT

Crawford, Murphy \& Tilly

April 15, 2020

ACKNOWLEDGMENTS

The authors greatly acknowledge the friendship, support, and commitment of the Webster County Commission. We dedicate this plan to the citizens and stakeholders of southern Webster County. We would like to express special gratitude to all involved stakeholders for their dedicated leadership and commitment to the safety and success of this project.

Webster County Commission

Presiding Commissioner - Mr. Paul Ipock
Northern Commissioner - Mr. Dale Fraker
Southern Commissioner - Mr. Randy Owens
County Clerk - Mr. Stanley Whitehurst

Agency Stakeholders \& Funding Partners

Missouri Department of Transportation - SW District
Missouri Department of Transportation - Multi-Modal District
Southwest Missouri Council of Governments
BNSF Railway

Local Municipalities

City of Rogersville
City of Fordland
Village of Diggins
City of Seymour

Planning Team

Crawford, Murphy and Tilly, Inc.

EXECUTIVE SUMMARY

U.S. 60 in Webster County, Missouri, serves as a major regional and national highway arterial and is heavily prioritized in terms of importance for the local communities. U.S. 60 has seen a continual increase in traffic over the past 20 years, resulting in significant traffic congestion, heightened safety risks, and loss of economic revenue. In addition, the BNSF Railway's Thayer-North line parallels U.S. 60 through much of Webster County, creating additional safety and connectivity concerns. As a result, Webster County Officials commissioned an independent study to analyze the U.S. 60 Highway and Rail Corridor through Webster County and to develop a Corridor Master Plan to improve safety and efficiency along the highway and rail corridor.
The U.S. 60 Corridor Master Plan is a long-term vision of the 22 -mile highway and rail corridor through southern Webster County, with the end goal of limited access freeway status for U.S. 60. The study took a holistic approach to developing a connected corridor that not only improves safety and efficiency along the highway and rail line, but also maintains local and regional connectivity that is vital to the local economies and rural residents. The study heavily relied on public involvement to determine the future of the U.S. 60 Corridor, and the resulting master plan identifies areas of improvement and prioritizes improvements based on quantitative analytics to justify the need for investment.

The existing corridor serves over 20,000 vehicles daily and has a considerable history of serious crashes. Since 2012, over 624 crashes have occurred on U.S. 60 and forty-four (44) train-vehicle crashes have occurred at the at-grade rail crossings since 1975 within the study limits. Local school buses travel on U.S. 60 approximately 80 times per day and cross the active railroad approximately 78 times per day. Additionally, U.S. 60 serves as the vital link for emergency responders to access and provide life-dependent services to local communities and surrounding rural areas, with over
 3,400 calls for assistance in 2018 along the corridor.

The importance of the BNSF Thayer-North line through Webster County is an essential link of the BNSF national rail network, as a major system component connecting Atlanta to Los Angeles. The increasing rail traffic has resulted in increased congestion at rail crossings and a heightened safety concern.

The U.S. 60 Corridor Master Plan recommends the consolidation of 49 at-grade highway access points to a limited access freeway with eight (8) full-access interchanges and one highway (1) overpass. Additionally, the plan recommends the closure of 21 at-grade rail crossings (16 public and five (5) private), two (2) at-grade rail crossing upgrades, one (1) rail overpass, and over 27 miles of outer roads.
The total cost for all improvements within the study is estimated at approximately 132.8 Million (2029 dollars), with a Benefit-Cost Ratio of 1.53 , resulting in a positive return on investment.

	U.S. 60 Corridor Summary		
Corridor Section	Total Cost (2029)	Net Benefits	BCA Value
Section I - Rogersville	$\$ 17,229,833$	$\$ 9,850,790$	$\mathbf{0 . 5 7}$
Section II - Fordland	$\$ 41,185,462$	$\$ 41,400,981$	$\mathbf{1 . 0 1}$
Section III - Diggins	$\$ 31,223,880$	$\$ 44,998,180$	$\mathbf{1 . 4 4}$
Section IV - Seymour	$\$ 43,152,223$	$\$ 105,497,100$	$\mathbf{2 . 4 4}$
U.S. $\mathbf{6 0}$ Corridor	$\mathbf{\$ 1 3 2 , 7 9 1 , 3 9 8}$	$\mathbf{\$ 2 0 3 , 3 2 9 , 0 5 0}$	$\mathbf{1 . 5 3}$

TABLE OF CONTENTS

I - Introduction \& Existing Conditions 1
Purpose \& Need 1
Background 1
Existing Corridor Conditions 2
BNSF Railway Existing Conditions 3
Economic Transportation Trends 5
U.S. 60 Corridor Safety Analysis 6
II - Public Involvement Process 8
Public Engagement \& Planning Process 8
Public Listening Sessions \& Opinion Survey 9
Proposed Alternative Development 14
Media Coverage \& News Outlets 20
III - Corridor Traffic Analysis 22
Introduction 22
U.S. 60 Existing Traffic 22
U.S. 60 Proposed Master Plan Traffic Analysis 24
Highway/Rail Interaction 27
Conclusions 29
IV - U.S. 60 Corridor Master Plan. 31
Introduction 31
Building a Connected Corridor 35
Opinion of Probable Costs 36
Investment Need Analysis 36
Recommended U.S. 60 Corridor Master Plan 38
V - Economic Analysis \& Land Use Planning. 40
Introduction 40
Population and Housing Assessment 40
Economic Development and Job Growth Projections 42
Retail Growth Projections 43
U.S. 60 Corridor New Retail Demand Potential 46
Land Use Projections 46
Residential Land Use. 46
Commercial and Industrial Land Use 48
Added Investment Value 52
VI - U.S. 60 Corridor Resiliency Planning. 54
Summary 54
VII - Implementation Strategies. 56
Corridor Improvements Prioritization 56
Temporary Detour Plan 57
Funding Mechanisms 58
Strategic Implementation 58
Appendices
Appendix A - Public Involvement
Appendix B - Traffic Models \& Safety Analysis
Appendix C - Corridor Improvement Maps
Appendix D - Proposed Cost Summary \& Benefit-Cost Analysis
Appendix E - Economic Analysis Tables
Appendix F - U.S. 60 Corridor Resiliency Planning
Appendix G - Stakeholder Resolutions \& Letters of Support

Introduction \& Existing Conditions

I - Introduction \& Existing Conditions

Purpose \& Need

U.S. 60 serves as a major regional and national highway arterial and is heavily prioritized in terms of importance for the local communities of Webster County. U.S. 60 has seen a continual increase in traffic of 1.11% annually since 2002, resulting in significant traffic congestion, heightened safety risks, and loss of economic revenue. In addition, the BNSF Railway's Thayer-North line parallels U.S. 60 through much of Webster County, creating additional safety and connectivity concerns. As a result, in February 2019, Webster County Officials commissioned an independent study to analyze the U.S. 60 Highway and Rail Corridor through Webster County and to develop a Corridor Master Plan to improve safety and efficiency along the corridor.
The U.S. Highway 60 Corridor and At-Grade Rail Crossing Master Plan has been completed in order to prepare a longterm plan for the 22-mile highway/rail corridor in southern Webster County, Missouri, with the end goal of limited access freeway status for U.S. 60. The scope of this study examined the impacts of the proximity of U.S. 60 and the adjacent BNSF Railway Thayer-North line and resulting high impacts on safety, connectivity, and regional resilience.

The Southwest Missouri Council of Governments (SMCOG) expanded the study to include economic resiliency planning, natural-disaster mitigation planning, and recovery efforts along the corridor. Natural disaster and emergency-event risks were identified and assessed for the role the U.S. 60 highway and rail corridor plays in regional disaster recovery and relief efforts as a primary emergency relief route for Interstate 44 (I-44).

Background

The section of U.S. 60 under review is located just east of Springfield, Missouri, and serves as a major transportation arterial running east-west across the entire state. Locally, U.S. 60 serves as the major commuter route for the communities of Rogersville, Fordland, Diggins, and Seymour (from west to east). U.S. 60 is currently a four-lane divided highway with 49 at-grade intersections within the study limits, of which 24 are full-access and 25 are partial access. The highest average daily traffic (ADT) for U.S. 60 is 23,225 near Rogersville. The 2017 populations of these communities were 3,649 in Rogersville, 837 in Fordland, 312 in Diggins, and 1,993 in Seymour.
The BNSF Thayer-North line is an essential segment of the eastwest rail network, generating major economic impacts related to the transportation of freight from Oakland/Los Angeles to St. Louis/ Memphis/Atlanta. The resulting heavy rail traffic impacts local communities on a daily basis, with 36 at-grade crossings within the study limits, 12 of which function as unsignalized private crossings.

The safety of the U.S. 60 corridor through Webster County is a major concern for area stakeholders, with 624 crashes occurring on U.S. 60 since 2012, including 21 fatalities. Forty-four (44) train-vehicle crashes have occurred at the at-grade rail crossings since 1975, with 15 resulting in fatalities.

Existing Corridor Conditions

U.S. HIGHWAY 60 EXISTING CONDITIONS

U.S. 60 is a major route for east-west travel in Missouri and nationally from the east coast in Virginia to its connection with Interstate 10 in western Arizona. As a result of its transcontinental connectivity, the 22-mile section through Webster County sees high volumes of passenger and freight traffic. With traffic projected to continue increasing, safety concerns have become a major priority for local officials and citizens.

Currently, there are 49 existing at-grade intersections, with 30 full-access and 19 partial access intersections, including two (2) signalized intersections within the 65 MPH corridor. Table 1 summarizes the existing intersections within the study limits.

The existing corridor has a considerable history of serious crashes attributed to the high-speed roadway and number of at-grade intersections, including two (2) signalized intersections on U.S. 60 in Seymour. Since 2012, over 624 crashes have occurred on U.S. 60 within the study limits. A full historical crash analysis was performed and can be seen in Section III - Corridor Traffic Analysis and Appendix B.

TABLE 1. U.S. 60 EXISTING INTERSECTIONS

HIGHWAY	CROSS STREET	ACCESS TYPE	2019 AVERAGE DAILY TRAFFIC (ADT)
US-60	Industry Road	Full	570
US-60	White Oak Road (Peck Hollow Rd)	Full	1010
US-60	Center Road	Full	1028
US-60	Power Line Road	Full	-
US-60	Private (Driveway)	Median	-
US-60	Porter Crossing Road	Full	209
US-60	Porter Loop/Private (Farm Access)	Full	40
US-60	Private (Farm Access)	North	-
US-60	State Highway U	Full	886
US-60	Private (Farm Access)	North	-
US-60	Private (Church Access)	South	-
US-60	Private (Driveway)	North	-
US-60	Private (Driveway)	North	-
US-60	Iron Mountain Road (Road 445)	Full	970
US-60	Private (Driveway)	North	-
US-60	State Highway FF (Burks Street)	Full	2200
US-60	State Highway PP (E Main Street)	South	320
US-60	State Highway Z	Full	911
US-60	Windswept Drive	North	20
US-60	Private (Farm Access)	North	-
US-60	Bluebird Lane	South	10
US-60	Hummingbird Lane	Full	33
US-60	Honor Camp Lane	Full	212
US-60	Green Brier Drive	South	-
US-60	Private (Driveway)	South	-
US-60	Private (Driveway)	South	-
US-60	State Highway A	Full	2590
US-60	State Highway NN (S Main Street)	Full	836
US-60	State Highway O	Full	970
US-60	Private (Driveway)	North	-
US-60	White Rose Lane	North	10
US-60	County Road 317 (Raspberry Road)	North	-
US-60	County Road 320 (Box School Loop)	Full	84
US-60	Berry Road	North	70
US-60	Killdeer/Short Road	Full	541

HIGHWAY	CROSS STREET	ACCESS TYPE	2019 AVERAGE DAILY
TRAFFIC (ADT)			

BNSF Railway Existing Conditions

The BNSF Railway's Thayer-North line parallels much of U.S. 60 through Webster County, and varies in proximity from 65 feet at the closest at-grade crossing to over 750 feet at the farthest at-grade crossing. The close proximity in certain locations often results in vehicular traffic queuing onto U.S. 60 affer turning onto an adjacent crossroad during times of rail traffic, creating significant rear-end collision risks.

At the beginning of the study, a team consisting of representatives from CMT (consultant), MoDOT Multimodal, BNSF, and Webster County conducted detailed diagnostic reviews of every public rail crossing within the study limits to better understand the existing conditions, exposure, and interactions of the rail and highway traffic. Items under review included warning devices, signage, track and road conditions, road widths, drainage, and other necessary components.
The existing Thayer-North line has a timetable speed of 50 MPH and sees over 27 trains daily. Currently, there are 36 at-grade highway/rail crossings within the study limits, with 12 serving as private accesses and 24 public road crossings. Table 2 summarizes the rail crossings and existing warning devices within the study limits.

TABLE 2. EXISTING RAIL CONDITIONS

	Roadway	USDOT \#	M.P.	Warning Devices
	Cherry Street	667619N	218.92	Closed
	Front Street	667620 H	219.05	FL / Gates
	Private Crossing	667621P	219.63	Crossbucks
	White Oak Road	6679622W	220.60	FL / Gates
	Porter Crossing Road	667623D	222.12	Crossbucks
	Private Crossing	667624K	222.51	Stop Sign
	Private Crossing	667625S	222.56	Stop Sign
	Private Crossing	667626Y	222.90	Stop Sign
	Dutch Hill Road	667628M	223.72	FL / Gates
	Red Oak Road (Ballpark)	667629 U	223.92	FL
	Private Crossing	667632C	225.00	Stop Sign
	Iron Mountain Road	667633J	225.41	FL / Gates
	Burks Street (Hwy FF)	667634R	226.30	Grade-Separated
	Center Street	667635X	226.50	FL / Gates
	Carpenter Sreet	667638T	227.24	FL / Gates
	Private Crossing	667639A	227.41	Stop Sign
	Highway Z	$667640 \cup$	227.66	FL / Gates
	Bluebird Lane	667641B	228.13	Crossbucks
	Hummingbird Lane	667642 H	228.64	Crossbucks
	Private Crossing	667643P	228.92	Stop Sign
	Tandy Road	667644W	229.17	FL / Gates
	Honor Camp Lane	667645D	229.73	FL / Gates

$\begin{aligned} & \frac{\Delta}{Z} \\ & \underline{U} \\ & \frac{U}{\square} \end{aligned}$	Private Crossing	667646K	230.32	Stop Sign
	Private Crossing	667647S	230.66	Stop Sign
	Private Crossing	667648 Y	230.89	Stop Sign
	Highway NN (S Diggins Main)	667650A	231.51	FL / Gates
	Raspberry Road	667651G	232.51	Closed
	W Box School Loop (Garden)	667652N	233.03	Crossbucks
$\stackrel{\sim}{\sim}$	Short Road	667653 V	233.75	FL / Gates
	Bison Road (E Box School Lp)	667654C	234.75	Crossbucks
	Private Crossing	667655J	235.50	Stop Sign
	Division Street	667656R	236.43	Closed
	Commercial Street	667657X	236.59	FL / Gates
	Main Street (Hwy K)	667659L	236.69	FL / Gates
	Charles Street	667660F	236.88	FL / Gates
	Oak Lawn Road	667661M	238.22	Crossbucks
	Private Crossing	667662U	238.75	Stop Sign
	Private Crossing	667663B	239.46	Stop Sign
	Peewee Crossing Road	667664H	239.95	FL / Gates
	Mineral Road	667665P	240.51	Crossbucks
	Dewberry Road	667667D	241.38	Crossbucks

The USDOT at-grade rail crossing crash-prediction model was utilized for the vehicle-train crashes along the corridor, and considered the historical crash data, as can be seen in Section III - Corridor Traffic Analysis.

EMERGENCY RESPONDER ACCESS

Currently there are four (4) fire stations, three (3) police departments, and three (3) emergency medical service (EMS) facilities that serve Webster County and its communities. U.S. 60 serves as the vital link for emergency responders to access and provide life-dependent services to local communities and surrounding rural areas. Due to the location of the BNSF Thayer Rail, passenger, freight, and emergency vehicles must cross the railroad to access northern or southern parts of the rural communities. Traffic congestion, crashes and other highway delays, compounded with high rail traffic volume, often result in the delay of emergency responders providing life-supporting care and the accompanying potential for unfortunate loss of life.

Webster County 911 services report that the agencies they dispatch along U.S. 60 include the Seymour Police Department, Seymour Fire Department, Southern Webster County Fire Protection District, Fordland Police Department, Rogersville Police Department, and Webster County Sheriff's office. These six (6) agencies alone report over 3,400 calls in 2018 responding to emergency situations along the U.S. 60 Corridor, including 380 responses related to motor vehicle crashes, fires, or medical emergencies on U.S. 60. Additional agencies that respond to U.S. 60 Corridor emergencies and are dispatched through other county \& state call centers include the Logan-Rogersville Fire Protection District, Cox Ambulance, the Missouri State Highway Patrol, and the BNSF Railroad Police.
It is imperative that emergency responders always have efficient and adequate access to the rural communities of Webster County. In a collaborative effort with local emergency services stakeholders, the study sought ways to minimize the adverse impact of highway/rail intersection blockages in an effort to reduce emergency response times.

SCHOOL SAFETY

Being mostly rural, Webster County is home to many school districts that span hundreds of square miles, resulting in school buses and students traveling on both major highways and rural county roads. The locations of school buildings often require buses loaded with students to cross the active rail tracks and make at-grade left turns onto U.S. 60. In many cases, the median openings are too narrow, resulting in the rear end of buses protruding into traffic or over rail crossings.

Currently, school buses from the Logan-Rogersville, Fordland, and Seymour School Districts travel on U.S. 60 approximately 80 times per day and cross the active railroad approximately 78 times per day. These crossings place students at a significantly heightened exposure to rail traffic and high-speed vehicular traffic. Table 3 below shows the current bus crossings along the U.S. 60 Corridor.

TABLE 3. 2019 SCHOOL BUS CROSSINGS

Economic Transportation Trends

The U.S. 60 Corridor is a major route for freight shipments via both truck and rail. While heavily influenced by the economy, freight shipments have continually been on the rise, and as a result, the U.S. 60 Corridor has seen significant increases in both rail and truck freight traffic.

A 2015 USDOT Freight Analysis ${ }^{2}$ estimated that $\$ 53$ billion of goods are shipped daily throughout the country on all transportation modes. Trucks make up the largest freight-transport sector, moving approximately 63% of the tonnage and 68% of the value of all transported goods. The 2015 analysis predicts that total freight movement will increase by 49% by 2045, and truck transport is expected to increase by 45%.

The BNSF Thayer-North line through Webster County is vital to the connectivity of the BNSF national rail network. This line is the primary route that carries coal and freight from the western U.S. to the southeast region, connecting the major hubs of Memphis, Birmingham, and Atlanta. The Federal Highway Administration recently forecasted that U.S. rail-freight shipments will increase by 35% to 24.1 billion tons by 2040^{3}. Missouri alone reports shipping over 400 million tons of freight in 2017, generating approximately $\$ 220$ billion in annual economic activity, making the railroad essential to the national and state economies ${ }^{4}$. While the rail throughout Missouri is vital to local, state, and national economies, the Thayer-North line through Webster County plays a more specific and critical role in the movement of freight in these local economies along the railroad.

U.S. 60 Corridor Safety Analysis

As traffic is continually increasing, and freight shipments via truck and rail are forecasted to increase, it is imperative that a plan be developed to improve the safety, connectivity, and resiliency of the U.S. 60 Corridor. The high number of serious crashes alone justify the need for safety improvements.

The highway/rail corridor was analyzed as a single, cohesive and interacting transportation network, and a holistic planning effort was performed to develop a plan to improve the U.S. 60 Corridor. Sessions were held with key stakeholders and the general public to develop a publicly supported and designed plan to create a safer, more connected network that fits the needs of the local communities. A corridor master plan was developed based on the concerns associated with the existing conditions, traffic volumes, public input, and safety analysis (see Section IV - Corridor Master Plan).

[^0]
Public Involvement Process

II - Public Involvement Process

Public Engagement \& Planning Process

The study included a proactive public outreach effort to drive the vision and alternative analysis for the U.S. 60 Corridor Master Plan. Webster County leaders were fervent in obtaining the public's participation and feedback during the planning process. Meetings were held with the respective municipalities and jurisdictional authorities to seek their input and support in the consolidation of at-grade highway/rail crossings. This effort was performed in collaboration with local and regional transportation plans for each of the municipal and county governments.

A "listen first" approach was taken on the project within each community. Instead of developing concepts and alternatives with little local understanding and insight, the team engaged the public in a series of listening sessions in each community to understand key issues and challenges related to U.S. 60, the railroad, and safety within the study limits. Through this process, each community within the study limits was engaged and actively sought feedback and alternatives from local business owners, stakeholders, and citizens who would be impacted by the master plan recommendations.

The process utilized a menu of different tools and techniques to obtain feedback and information from the public during the process. The approach was designed to engage many different demographics and geographic participants. This collaborative and flexible approach to engaging the public was initiated throughout the process and has resulted in a plan that has the support of the public. The process is graphically depicted in Figure 2.

Figure 2. Public Involvement Process

This plan provides recommendations largely based on opinions and perceptions of those who know the community best: its residents, businesses, and property owners. Community leaders made an essential commitment to engage the public using multiple methods to ensure transparency and innovation in generating support and commitment towards the success of the project.

ONE ON ONE STAKEHOLDER INTERVIEWS (05/05/19 \& 05/30/19)

Initial interviews were held at the Webster County Emergency Management Center on May 5, 2019 with stakeholders from Rogersville and Fordland and on May 30, 2019 with stakeholders from Diggins and Seymour. These stakeholder groups were comprised of local elected officials, public works personnel, emergency responders, emergency management personnel, and road maintenance personnel.

Stakeholders provided valuable insights to the challenges and issues occurring within each of their respective communities along U.S. 60 in regard to the traffic congestion, safety, railroad impacts, and flooding impacts to the local transportation network.

ONE ON ONE STAKEHOLDER MEETINGS (10/08/19 \& 10/15/19)

A second round of meetings with local stakeholders and municipality leadership was held with Rogersville and Fordland on October 8, 2019 and with Diggins and Seymour on October 15, 2019. At the conclusion of these meetings, each community was requested to adopt a resolution of support acknowledging the transparent public outreach process and their support for the U.S. 60 Corridor Master Plan.

Public Listening Sessions \& Opinion Survey

In addition to interviews with local stakeholders, public listening sessions were held in each community to obtain the feedback of citizens. The initial meeting in each community provided the public with details on scope of the study and provided the opportunity to receive their direct feedback in the forms of $Q \& A$ sessions, comment boards, and public opinion surveys. The meeting was designed to encourage the public to generate concepts of their long-term vision for the U.S. 60 Corridor.

In addition to interviews with stakeholders and public listening sessions, the project team administered a survey for a four (4) week period. The survey was provided in conjunction with the first public listening session and provided an opportunity for citizens and business owners to provide specific feedback to issues and concerns regarding various roadways, intersections, and rail crossings along the U.S. 60 Corridor. A community-specific survey was provided in person at the respective first public meeting as well as electronically on the Webster County Commission's webpage. Those completing the survey had the option to complete and return at the meeting in-person, by mail, online, or by email. A copy of each community survey and results summary is attached in Appendix A.
A summary of feedback received during the first public listening session and on the public opinion survey was presented to the public during the second listening session in each community. Conceptual Alternatives developed during the first meeting and by the project team were presented to the public at the second meeting and meeting participants were provided an opportunity to vote on their preferred option by ranking the alternatives using numbered dots ($1=$ Most Preferred). A tally of the voting results shows which alternative had the strongest community support. A summary of each community's favored alternative is attached in Appendix A.
A third meeting was held in each community to inform the public of the plan for the U.S. 60 Corridor that was developed as a result of the study and previous public meetings. These meetings included a high-level overview of the project, proposed improvements, estimated costs, and benefit-cost analysis.
Overall, the public input received throughout the study ultimately lead the direction of the proposed improvements along the corridor. In total, there 12 meetings held, with over 300 rural participants. The proposed improvement plan was selected as the favored alternative by 72% of the community.

initionif

COMMUNITY FAVORED

72% of the community selected this alternative as their preferred plan.

12 Total Public Meetings Held

300+ Rural Particiants

The following meetings were held in the respective communities:

"Porter Crossing has a steep incline from the Rail crossing to Hwy 60 and is very short. The length between the crossing and Hwy 60 is only about a bus length, causing concerns for traffic backups on Hwy 60."
"Trains will often block the White Oak crossing by approximately 4 rail cars for upwards of 20 minutes (mostly in the PM hours)."
"Most residents utilize the White Oak Crossing rather than Porter due to the profile issue and short distance between the Rail/Hwy 60, except in times of heavy rain, as White Oak has a tendency to flood in several low areas."
"The Dog Bone interchange works well. The community would be in favor of developing a similar interchange elsewhere."

ROGERSVILLE LISTENING SESSION \#2

7.16.19 - Rogersville First Baptist Church
:ig: 16 Attendees
t Alternative \#1-Publicly Favored

ROGERSVILLE INFORMATIONAL MEETING

:9: 12 Attendees

FORDLAND LISTENING SESSION \#1
06.13.19 - Fordland City Hall

: 22 Attendees

- 25 Surveys Completed

$f 6$

Key Comments Received
"Eliminating at-grade crossings would be okay if a person doesn't have to detour around for miles (ex. Z Hwy)."
"I would like to see a quiet zone at Center St. and Carpenter."
"Hwy 60 badly needs on and off ramps entering and exiting. Hwy 60 is dangerous. Traffic increases are at least ten-fold in the past ten years. Our business, Chateau Charmant, is currently closed in part because Hwy 60 is unsafe due to semi-truck traffic which crosses center lines on sharp curves."
"The Hwy 60/FF (Burks) intersection has an extremely short crossover with bad sight distance."
"There is concern for younger aged drivers trying to enter/exit Hwy 60 with such high traffic volumes and speed."
"Concerns with citizens parking on RR right of way during baseball games. Also, there are concerns of people walking across the RR tracks at the ballpark."
"Many accidents happen at the Hwy 60 overpass (S-Curve) over the railroad, especially in icy conditions. Many locals go through town (under overpass) instead of taking 60 because the overpass is dangerous."

FORDLAND LISTENING SESSION \#2

7.3.19 - Fordland City Hall

: 17 Attendees

Alternative \#2A - Publicly Favored

:9: 34 Attendees

DIGGINS LISTENING SESSION \#1
6.18.19 - Diggins Community Center

:9: 41 Attendees

- 30 Surveys Completed

$f 6$
 Key Comments Received

"All crossings should have RR guard gates to safely be able to cross the tracks along Hwy 60."
"We need crossing over the railroad and Hwy 60 between Hwy A and Seymour."
"The intersection at Hwy A and Hwy 60 is very dangerous. Cannot see good pulling out of Hwy A to Hwy 60 because traffic is moving too fast with the curves. Cannot tell which lane cars are in on Hwy 60."
"There is a Quarry located approximately 1 mile down Hwy NN. Many heavy loaded trucks use the Hwy NN Rail Crossing \& Intersection. The Deceleration lane is too short, causing traffic to queue on US 60 during Rail Traffic."

DIGGINS LISTENING SESSION \#2
07.30.19 - Diggins Baptist Church
: 51 Attendees
t Alternative \#2 - Publicly Favored

DIGGINS INFORMATIONAL MEETING \#3
11.12.19-Diggins Baptist Church
:0: 31 Attendees

SEYMOUR LISTENING SESSION \#1

6.25.19 - Seymour City Hall

:9: 44 Attendees

- 23 Surveys Completed
ff
Key Comments Received
"The signalized intersections on Hwy 60 are the most dangerous areas."
"There is concern for impacts to businesses/sales tax if there isn't visible access to businesses if signalized intersections were to be removed. Others had concerns for safety if the stop lights were left in place."
"The Oak Lawn Rail Crossing has seen the highest incident rate and is the most dangerous rail crossing in town. It needs lights \& gates."
"The Mineral Road Rail crossing is not needed and should be removed. It has very little traffic on it."
"The Fire Department \& Police Department could be separated from US 60 and several schools in the event of a train blocking all crossings in town."
"The Advanced Signal Warning Signal sign is too small and is hidden as EB traffic comes around curve."

SEYMOUR LISTENING SESSION \#2

8.8.19 - Seymour Senior Center
:3: 42 Attendees

* Alternative \#2B - Publicly Favored

SEYMOUR INFORMATIONAL MEETING \#3

11.19.19 - Seymour Senior Center

: 34 Attendees

Proposed Alternative Development

From the start of the study, emphasis was placed on incorporating public input with the goal of creating a final master corridor plan that was ultimately developed and supported by each community.

Input received from the initial stakeholder meetings and public listening sessions was used to develop multiple conceptual alternatives for each study section. Alternatives ranging from a No-Build Scenario to a full corridor overhaul were presented at the second public listening sessions. Community members were provided the opportunity to rank the proposed improvement alternatives using numbered dots, with one (1) being the most favored. Additional public input was collected, and hybrids were developed at the meetings as needed.

The alternatives from each section are summarized below. Map exhibits for each alternative can be found in Appendix A. Generally, Alternative 1 was developed by the public during the first public listening sessions. In each section, the No-Build alternative was ranked last, indicating the public desires some type of improvements along the corridor.

ROGERSVILLE

Four alternatives were developed in the Rogersville section. Table 4 below summarizes the alternatives presented and the public ranking. All 16 meeting attendees provided their vote, with Alternative 1 resulting as the preferred improvement plan, and was incorporated into the U.S. 60 Master Corridor Plan.

TABLE 4. ROGERSVILLE IMPROVEMENT ALTERNATIVES

Rogersville Alternative Summary					
Alternative	\# of Proposed Interchanges	\# of At-Grade Hwy Intersection Closures	\# of At-Grade Rail Crossing Closures	\# of At-Grade Rail Crossing Upgrades	Public Ranking
Alternative 1	1	5	-	1 Public	1
Alternative 2A	-	5	-	1 Public	2
Alternative 2B	-	3	-	1 Public	3
Alternative 3	-	-	-	1 Public	4

ALTERNATIVE 1

The improvements proposed in this alternative would effectively transform the existing U.S. 60 into a limited-access freeway through Rogersville. Improvements are centered around an interchange at White Oak Road, with outer roads funneling traffic from the existing at-grade intersections to the new interchange. To improve safety, U.S. 60 Westbound lanes would be realigned to parallel the eastbound lanes. The existing westbound lanes would become an outer road, connecting Porter Crossing to Center Street, and removing the associated at-grade intersections.

Additional improvements include a new roadway connecting Peck Hollow Road to Farm Road 185, providing unimpeded connectivity to Highway W and Highway 125 on the south side of U.S. 60. It is expected that this improvement would alleviate any traffic congestion associated with the consolidation of at-grade intersections.
Rail Improvements include sidewalk upgrades at the Front Street crossing, lights and gates warning upgrades to Porter Crossing, and a roadway approach profile adjustment at the Porter Crossing Road at-grade rail crossing.

ALTERNATIVE 2A

Traffic flows and outer road connectivity in this alternative are proposed similar to Alternative 1, however a J-Turn configuration is proposed at White Oak Road. These improvements would result in a reduction of five at-grade intersections, and traffic funneling to the White Oak Road intersection.

Rail Improvements include sidewalk upgrades at the Front Street crossing, lights and gates warning upgrades to Porter Crossing, and a roadway approach profile adjustment at the Porter Crossing Road at-grade rail crossing.

ALTERNATIVE 2B

Similar to Alternative 2A, a J-turn configuration is proposed at the White Oak Road intersection, along with the closures of the Chicory Road and Center Road at-grade intersections. An outer road connecting these roads is proposed with a right-in, right-out configuration at White Oak/Peck Hollow.
Rail Improvements include lights and gates warning upgrades to Porter Crossing and a roadway approach profile adjustment at the Porter Crossing Road at-grade rail crossing.

ALTERNATIVE 3

The improvements presented in this alternative were considered the No-Build alternative and include only an at-grade rail crossing upgrade to Porter Crossing Road and roadway approach profile adjustment. No other roadway or rail improvements were proposed under this alternative.

FORDLAND

Five alternatives were developed in the Fordland section. Table 5 below summarizes the presented alternatives and the public ranking. Out of the 17 attendees, 16 community members voted. With an average ranking of $3.20 / 5$, Alternative 2 A was ranked as the preferred improvement plan. A hybrid of this plan, with only minor changes to improvements was included in the U.S. 60 Master Corridor Plan.

TABLE 5. FORDLAND IMPROVEMENT ALTERNATIVES

Fordland Alternative Summary					
Alternative	\# of Proposed Interchanges	\# of At-Grade Hwy Intersection Closures	\# of At-Grade Rail Crossing Closures	\# of At-Grade Rail Crossing Upgrades	Public Ranking
Alternative 1	2	6	3 Public + 1 Private	3	2
Alternative 2A	3	9	$\begin{aligned} & 8 \text { Public }+2 \\ & \text { Private } \end{aligned}$	1	1
Alternative 2B	2	9	$\begin{aligned} & 8 \text { Public }+2 \\ & \text { Private } \end{aligned}$	1	3
Alternative 3	-	1	1 Public	3	4
Alternative 4	-	-	1 Public	1	5

ALTERNATIVE 1

Improvements proposed under this alternative include a partial freeway conversion in the Fordland section, with interchanges proposed at Highway FF (Burks Street) and Highway Z. The Highway Z interchange will span the highway and railroad. Outer roads are proposed to connect Front Street and Barton Drive to the Highway Z Interchange. Additionally, this alternative proposes closing and replacing the Bluebird Lane and Hummingbird Lane intersections with one intersection between the two existing locations. This improvement would eliminate one at-grade intersection and utilize the existing old Highway 60 road as a connection, allowing for better profile of the minor roads.
To reduce vehicle crashes on U.S. 60 during wet and icy conditions, a high friction surface treatment is recommended along the S-Curve between Burks Street and Highway PP.

Rail Improvements include the closure of the Dutch Hill Road. grade crossing with a roadway connector to Red Oak Road. Additional closures are proposed at Carpenter Street and Highway Z with the implementation of an interchange. Lights and gates upgrades are proposed at Red Oak Road, Bluebird Lane, and Hummingbird Lane. Security fencing and a pedestrian sidewalk crossing are proposed at the Center Street grade crossing.

ALTERNATIVE 2A

Improvements proposed in this alternative include a full limited-access freeway conversion, with three proposed interchanges: Highway U, Burks Street (Hwy FF), and Highway Z. An outer road system is proposed along the corridor to reroute traffic from the existing at-grade intersections to the three proposed interchanges, allowing for the reduction of nine at-grade intersections and ten at-grade rail crossings. Outer roads will connect to the Rogersville section to the west and to Highway A (Diggins) to the east.

Additional security fencing and pedestrian sidewalk improvements are proposed at the Center Street crossing to improve safety and security in town.

ALTERNATIVE 2B

Similar to Alternative 2A, this alternative proposes a full conversion to a limited-access freeway. Interchanges are proposed at Burks Street (Highway FF) and Highway Z, and a highway overpass is proposed at Highway U. An outer road system will reroute traffic to the key access points along the corridor, allowing for the removal of nine at-grade intersections and ten at-grade rail crossings. Outer roads are proposed to connect to the Rogersville section (west) and the Diggins section (east).

Additional security fencing and pedestrian sidewalk improvements are proposed at the Center Street crossing to improve safety and security in town.

ALTERNATIVE 3

Improvements proposed in this alternative would reduce one at-grade rail crossing, one at-grade intersection, and three at-grade rail crossing upgrades.

Dutch Hill Road is proposed to be closed, with a new road connection to Red Oak Road. Security fencing and pedestrian sidewalk improvements are proposed at the Center Street crossing to improve safety and security in town. Intersection consolidation and improvements at Bluebird Lane and Hummingbird Lane would improve safety and reduce one at-grade intersection.
To reduce vehicle crashes on U.S. 60 during wet and icy conditions, a high friction surface treatment is recommended along the S-Curve between Burks Street and Highway PP.

ALTERNATIVE 4

Considered the No-Build alternative, proposed improvements include the closure of the Dutch Hill Road at-grade rail crossing and a new roadway connection to Red Oak Road. Additionally, deceleration and acceleration lanes at the Hwy PP intersection are proposed to be extended to provide added safety for vehicles entering and existing U.S. 60. All other intersections and rail crossings would remain open.

DIGGINS

Four alternatives were developed in the Fordland section. Table 6 below summarizes the presented alternatives and the public ranking. Out of the 51 attendees, 50 community members voted. With an average ranking of $2.87 / 4$, Alternative 2 was ranked as the preferred improvement plan. Ultimately, a hybrid of Alternative 1 and Alternative 2 was developed and incorporated into the U.S. 60 Corridor Master Plan.

TABLE 6. DIGGINS IMPROVEMENT ALTERNATIVES

Diggins Alternative Summary					
Alternative	\# of Proposed Interchanges	\# of At-Grade Hwy Intersection Closures	\# of At-Grade Rail Crossing Closures	\# of At-Grade Rail Crossing Upgrades	Public Ranking
Alternative 1	$1+1$ Overpass	8	4 Public +3 Private	-	2
Alternative 2	$1+1$ Overpass	8	4 Public +3 Private	-	1
Alternative 3	$1+1$ Overpass	8	$4 \text { Public + } 3$ Private	-	3
Alternative 4	-	-	-	2	4
Alternative 4	-	-	1 Public	1	5

ALTERNATIVE 1

Alternative 1 continues the outer road system from Fordland and connects to a new interchange at Highway A. This interchange would span the highway and rail, requiring a realignment of Highway A and Highway NN. Additionally, a new highway and rail overpass is proposed at Short Road.

The outer road system through Diggins would route traffic to the Highway A interchange, Short Road overpass, and W. Clinton Avenue (Seymour). Connecting the existing roadways allows for fluid connectivity from Diggins to Seymour, resulting in fewer vehicles with the need to utilize U.S. 60 for local travel.
Additionally, the improvements were designed to accommodate agricultural buggies, and sought to separate higher speed motor vehicles from the buggies. As such, shoulder pull-offs on Highway A, gravel shoulders, and wider bridge structures are proposed to accommodate these various modes of travel.

ALTERNATIVE 2

Similar to Alternative 1, improvements proposed in Alternative 2 include an interchange and Highway A and an outer road system providing connectivity from Diggins to Seymour both north of U.S. 60 and south of the railroad. This alternative also proposes a highway/rail overpass, however located at Berry Road.
Additional improvements include a new connection from Highway O to Highway A, including agricultural shoulder pull-offs and intersection improvements at Highway A/Diggins Rd.

ALTERNATIVE 3

Improvements proposed in this alternative are quite similar to Alternative 1, with the exception of the south outer road from E Box School Loop. to Finley Falls Road in Seymour. Improvements include the Highway A interchange, Highway NN realignment, and the Short Road overpass. The outer road system would span from Short road west to Highway A and the Fordland section.

ALTERNATIVE 4

Alternative 4 is proposed as the No-Build alternative and includes no associated roadway improvements. Rail improvements only include upgrading the W Box School Loop and E Box School Loop at-grade crossings to include an active lights and gates warning system.

SEYMOUR

Four alternatives were developed in the Fordland section. Table 7 below summarizes the presented alternatives and the public ranking. Out of the 51 attendees, 50 community members voted. With an average ranking of $2.87 / 4$, Alternative 2 was ranked as the preferred improvement plan. Ultimately, a hybrid of Alternative 1 and Alternative 2 was developed and incorporated into the U.S. 60 Corridor Master Plan.

TABLE 7. SEYMOUR IMPROVEMENT ALTERNATIVES

Seymour Alternative Summary					
Alternative	\# of Proposed Interchanges	\# of At-Grade Hwy Intersection Closures	\# of At-Grade Rail Crossing Closures	\# of At-Grade Rail Crossing Upgrades	Public Ranking
Alternative 1A	2	4	1 Public +1 Private	2	4
Alternative 1B	2	4	3 Public + 1 Private	2	2
Alternative 2A	3	10	3 Public + 1 Private	1	3
Alternative 2B	3	10	3 Public + 1 Private	1	1
Alternative 3	2	10	3 Public + 1 Private	1	5
Alternative 4	-	-	1 Public	2	6

ALTERNATIVE 1A

Alternative 1 A includes improvements that were developed by the public at the first listening session. This plan calls for two interchanges in Seymour: W Clinton Avenue and Highway C/Highway K. Both interchanges would result in the removal of the only at-grade signalized intersections along the corridor, significantly increasing safety.
The W Clinton Avenue interchange would span the highway and railroad and would connect the outer road system from Diggins to Seymour. Additionally, the Skyline Road intersection would be eliminated with a new outer road connecting to the new interchange, increasing safety and providing economic development opportunities. Outer roads on the south would connect to Finley Falls Road and Velma Drive, providing increased connectivity and vital emergency access.

The Highway C/Highway K interchange would tie into a new intersection at Highway K/E Clinton Avenue. An outer road along the north side of U.S. 60 would allow for the removal of the north side of the Oak Lawn Road intersection. Additionally, to improve connectivity and resiliency in the event a train blocks all crossings in town, a rail overpass is proposed to connect to Summit Avenue and the Highway K/E Clinton Avenue intersection.

Intersection improvements at Peewee Crossing and Mineral Road are proposed to improve sight distances for turning vehicles and accommodate the high truck volume leading to the logging mill to the south.
To improve pedestrian safety and security, security fencing is a proposed along the railroad from Main Street to just west of Charles Street. Pedestrian crossing improvements are proposed at Charles Street to accommodate pedestrians traveling to the YMCA or the local school.

At-grade rail crossing improvements include the upgrade of the Oak Lawn Road and Dewberry Road crossings to include an active lights and gates warning system and the closure of the Mineral Road crossing.

ALTERNATIVE 1B

Roadway improvements proposed under this plan are similar to Alternative 1A, but the outer road connecting the W Clinton Avenue interchange to Skyline road is shifted north. Additionally, a new roadway paralleling the railroad on the south side would stretch from the W Clinton Avenue interchange to Main Street (Hwy K). This would result in the closures of the Commercial Street and Charles Street at-grade rail crossings. Traffic south of the railroad would have three routes to the north: the new road to the W Clinton Avenue interchange, the Summit Avenue overpass, or the Main Street at-grade rail crossing.

ALTERNATIVE 2A

Improvements proposed under this plan include three interchanges: at W Clinton Avenue, Highway C/Highway K, and Peewee Crossing Road. The proposed outer road system and connectivity would be identical to Alternative 1B at the W Clinton Avenue interchange. The Highway C/Highway K interchange would also be similar, with connection to a new intersection at the Highway K/E Clinton Avenue intersection.
An outer road system east of Seymour is proposed, centered around limited access to the Highway C/Highway K and Peewee Crossing Road interchanges. The Peewee Crossing interchange would span the highway and railroad, with an outer road system stretching east to several private access intersections and west to the Webster/Wright County line, resulting in the reduction of four at-grade intersections and three at-grade rail crossings.

Additionally, a realignment to improve the eastbound U.S. 60 curve between Oak Lawn Road and Peewee Crossing allows for the existing lanes to become an outer road, connecting several private accesses to Oak Lawn Road. Improvements to the eastbound U.S. 60 lanes at the county line would improve geometrics and safety where there have historically been a higher number of crashes.

To improve pedestrian safety and security, security fencing is a proposed along the railroad from Main Street to just west of Charles Street. Pedestrian crossing improvements are proposed at Charles Street to accommodate pedestrians traveling to the YMCA or local school.

ALTERNATIVE 2B

Improvements in this plan are identical to Alternative 2A, except for the addition of the Summit Avenue rail overpass. This alternative was used to gauge public interest in having a grade-separated crossing over the railroad. All other roadway and rail improvements remain the same to Alternative 2A.

ALTERNATIVE 3

Improvements under this plan are centered around one interchange in Seymour located where original plans called for an interchange decades ago. This would align with Main Street, and all access into Seymour would be centered around this location. An outer road would extend Bison Road (Diggins) west to the new interchange, and Highway C would be realigned to the east to connect to the interchange. Main Street would be extended north to provide connectivity from town to the new interchange. Slip-on and slip-off ramps are proposed near the existing W Clinton Avenue and Highway $\mathrm{C} /$ Highway K intersections to maintain efficient travel and access to businesses. These improvements would result in the closure of all at-grade intersections in Seymour

Additionally, the southern outer road from Diggins would connect to Finley Falls Road and Velma Road for connectivity to the south. The Peewee Crossing interchange would be identical to Alternatives 2 A and 2 B with the same outer road system stretching east to the county line.

To improve pedestrian safety and security, security fencing is a proposed along the railroad from Main Street to just west of Charles Street. Pedestrian crossing improvements are proposed at Charles Street to accommodate pedestrians traveling to the YMCA or local school.

ALTERNATIVE 4

This plan is considered the No-Build Alternative, and it includes offset left turn lanes and acceleration/deceleration lanes at Skyline Road, the upgrade of the Oak Lawn Road at-grade rail crossing to include an active lights and gates warning system, and the closure of the Mineral Road at-grade crossing.

Media Coverage \& News Outlets

Partners of the local media were informed and utilized to advertise and inform the public on project meetings and milestone progress. Throughout the study, there has been significant media coverage and publications that are summarized below and attached as part of Appendix A.

- February 13, 2019
- June 05, 2019
- June 11, 2019
- June 19, 2019
- July 03, 2019
- October 22, 2019
- November 20, 2019
- November 27, 2019

The Marshfield Mail "County plans for highway's future"
The Marshfield Mail "County forming plans for future of U.S. 60"
KSPR "Webster County looks to improve the safety of Highway 60"
Webster County Citizen "U.S. 60 Meeting Tuesday"
Webster County Citizen "U.S. 60 Future Debated"
KY3 "Webster County finalizes plan to improve safety on U.S. 60"
The Marshfield Mail "U.S. 60 study recommends $\$ 714.3$ million in improvements"
Webster County Citizen "Three New Interchanges"

U.S. 60 future debated

County-led study comes to Seymour with 58 in attendance By Dan Wehmer Webster County Citizen citizen@webstercountycitizen.com Jul 3, 2019

Consultant Steve Prange. left of Crawford, Murphy \& Tilly goes over U.S. 60 traffic issues with Cpl. Chase Davis of the Seymour Police Department, right, at last week's meeting.
CIIZEN PHOTO/Dan Wehmer
$f y=\theta$ ロ

Figure 4. Webster County Citizen "U.S. 60
Future Debated" (Left)

Corridor Traffic Analysis

III - Corridor Traffic Analysis

Introduction

The existing U.S. 60 Corridor in Webster County is a 4 -lane divided highway with 49 at-grade intersections. A traffic analysis was performed to evaluate the potential effects of consolidating these at-grade crossings into eight (8) grade-separated interchanges and one (1) overpass, effectively making U.S. 60 a limited access freeway. Traffic models were utilized to predict vehicular highway crash rates and vehicle-train collisions using historical data and standard engineering best practices.

The consolidation and improvement of 36 at-grade railroad crossings in the study area were also evaluated, with the proposed plan recommending the closure of 21 at-grade rail crossings, two (2) at-grade crossing upgrades, one (1) rail overpass, and seven (7) highway interchanges that span the BNSF Railway.
A detailed description of each improvement can be found in Section IV - Corridor Master Plan.

U.S. 60 Existing Traffic

EXISTING TRAFFIC VOLUMES

Traffic counts were collected along U.S. 60 at 32 at-grade public intersections within the study area during the morning and afternoon peak hours in Spring 2019 (Appendix B). An annual growth factor of 1% was applied to the 2019 traffic counts to develop a 20 -year projected model (2039 traffic volumes), assuming no improvements are implemented (the no-build model). The 2039 traffic volumes can be found in Appendix B. The 2039 data was used to develop traffic models that reflect the proposed roadway and railroad crossing consolidations and improvements. The no-build and proposed 2039 traffic models were compared to assess the potential impacts of roadway improvements to the transportation network.

EXISTING TRAFFIC DELAYS

For the purposes of this traffic study, delay is broken up into two components: control delay and travel delay. Control delay represents the increase in travel time that a vehicle experiences due to traffic control, such as stop signs or traffic signals. Control delay also provides a measure of additional fuel consumption due to time spent idling. Synchro, a macroscopic traffic modeling software, was utilized to determine the control delay for each intersection in both the existing and proposed scenarios.

Only two (2) of the 32 intersections within the study area are signalized, with the rest being two-way stop-controlled intersections, meaning that there is no traffic control on U.S. 60, while the minor intersecting road is controlled by stop signs. Since U.S. 60 is a major arterial with periods of heavy traffic and a speed limit of 65 MPH , there are times where vehicles on the minor approaches experience significant control delay as they wait for an opportunity to turn onto, cross, or turn left off of U.S. 60. These delays often result in the formation of vehicle queves, which ultimately increase the risk of crash occurrences.

Travel delay represents the difference in travel time, irrespective of control delay, between the existing and proposed route of a vehicle. If a vehicle would have to travel longer to get to the same destination once roadway improvements are constructed, then the extra travel time added by the roadway improvement is the travel delay. Travel delay can also be negative, meaning the implementation of an improvement may reduce the travel time of a vehicle. Travel times for the existing conditions were determined for the purposes of calculating travel delay, which will be discussed further in the proposed master plan traffic analysis.

CRASH HISTORY

Safety along the U.S. 60 Corridor in Webster County is of major concern, especially given the high number of serious crashes reported in the area. Since 2012, there have been 624 crashes on U.S. 60, including 21 fatalities ${ }^{5}$. A breakdown of crash type can be seen in Table 4, and a map showing crash "hot spots" along the U.S. 60 Corridor can be seen in Figure 5. Detailed crash data is attached in Appendix B.

55 MoDOT Crash Database (June 2019)

Figure 5. Crash Density

TABLE 8. U.S. 60 WEBSTER COUNTY CRASH HISTORY, BY SECTION AND CRASH TYPE

Section	Crash Occurrences Since 2012				
	Property Damage Only	Minor Injury	Serious Injury	Fatal	Total
Rogersville	106	42	7	6	161
Fordland	100	46	5	4	155
Diggins	70	31	12	3	116
Seymour	120	54	14	4	192
Total	396	173	38	17	624

Table 8 shows a breakdown of crash occurrences since 2012 by study section of U.S. 60 and by crash type. Seymour has historically experienced the highest rate of crashes within the study limits. This is due to the higher traffic volumes and more at-grade intersections in the Seymour area, including two (2) signals. The presence of more intersections and higher traffic volumes results in greater opportunities for vehicles to conflict with one another, thus resulting in higher crash rates. The rates of crashes in the other sections follow this same pattern, respective to the ADT and number of intersections.

When compared to the statewide crash rate for U.S. numbered routes of 112.6 total crashes per 100 million vehicle miles traveled, U.S. 60 in Webster County experiences a lower crash rate of 57.2 total crashes per 100 million vehicle miles traveled ${ }^{6}$. However, U.S. 60 in Webster County has had an abnormally high number of crashes that result in fatalities and disabling injuries in the past several years alone. Of the 624 recorded crashes, 2.7% resulted in at least one fatality, and 6.1% resulted in a disabling injury. The highest number of fatal and injury crashes have occurred at Highway K/ Highway C, West Clinton Avenue, and Highway A, respectively.
Many of these serious crashes were right angle crashes with "failed to yield to incoming traffic" listed as the primary factor". These types of crashes highlight the need for safety improvements along the corridor to reduce vehicle conflict points and minimize the severity of crashes.

PROJECT FREEWAY CASE STUDY

With the recent completion of the Project Freeway project west of Rogersville (Greene County) in 2015, a case study was performed in conjunction with the U.S. 60 Corridor Study. The signalized at-grade Route B/W (Mill Street) intersection was replaced with a full-access interchange, greatly reducing the conflict points and severity of crashes that occur. Figures 6 and 7 show the before-and-after crash density in the Rogersville area. Prior to construction, 63 total crashes occurred at the intersection from 2012 to 2015, including 15 serious injuries. In the post-interchange condition, only 19 total crashes occurred over a three (3) year period from 2016-2019, and only included two (2) serious injuries. In the pre- and post-interchange analysis, it is understood that the higher crash rates move from the signalized intersection to other at-grade intersections further east along U.S. 60.

Figure 6. Mill St. Crash Density (Pre-Interchange)

Figure 7. Mill St. Crash Density (Post-Interchange)

A similar existing condition is present at the signalized intersections in Seymour at W Clinton Avenue and Highway K/ Highway C. This case study was utilized to justify to the public the importance of safety enhancements along the corridor. Overall, U.S. 60 in Webster County has seen a high number of fatal and disabling injury crashes in recent years, and the at-grade intersections along the corridor have been common locations for crashes to occur.

U.S. 60 Proposed Master Plan Traffic Analysis

FUTURE TRAFFIC VOLUMES

Future traffic models for the proposed U.S. 60 Corridor Master Plan were generated and used to develop traffic delay and crash prediction models. Existing turning movements at the at-grade intersections were redistributed to the eight (8) proposed interchanges, with assumptions made on the most likely new route a vehicle would take to reach its destination. In general, this was done by assigning each existing turning movement (left, through, and right) at each intersection a new route, if needed, to accomplish the respective movement under the proposed conditions.

FUTURE DELAY

Control delay for the proposed scenario was determined using Synchro software. Each of the eight (8) proposed interchanges were modeled as a stop-controlled tight-diamond interchange, though further analysis should be performed in design to determine the most effective interchange geometry for each location.

In this general configuration, exit and entrance ramps allow U.S. 60 to operate as a controlled access freeway. Vehicles traveling at vastly different speeds no longer interact and control delay will be reduced significantly because turning movements will no longer be in direct conflict with traffic on U.S. 60. Vehicles crossing U.S. 60 will move freely on the overpasses with no control delay, vehicles entering U.S. 60 will use ramps and acceleration lanes to merge with no control delay, and traffic exiting U.S. 60 will experience minimal control delay at the ramp terminals. Additionally, the proposed removal of existing signals at W Clinton Avenue and Highway K (Seymour) would significantly reduce control delay along the corridor, as through traffic on U.S. 60 would no longer be required to stop in these locations.
Travel-delay time between the existing and proposed conditions was generally found to be a positive value for the entire corridor, resulting in vehicles traveling further in the proposed scenario. Though certain areas would result in a decreased travel time, the overall corridor and sections have an increase in travel time in the proposed conditions. While this is the case due to the consolidation of intersections and implementation of an extensive outer road network, safety was the focus of consolidation (see Future Crash Prediction below).

TABLE 9. COMPARISON OF 2039 NO-BUILD AND PROPOSED DELAY, BY SECTION

	Delay (Hours per Day)						
Section	Cont	Delay	Adver	Travel		Total Delay	
	No-Build	Proposed	No-Build	Proposed	No-Build	Proposed	Daily Reduction
Rogersville	16.3	4.9	45.6	68.4	61.9	73.4	+11.5
Fordland	22.9	12.4	85.0	127.6	107.9	140.0	+32.1
Diggins	16.1	9.9	59.0	101.7	75.1	111.5	+36.4
Seymour	154.9	26.7	126.4	236.3	281.3	263.0	-18.3
U.S. 60 Corridor Totals					526.2	587.9	+61.7

FUTURE CRASH PREDICTION

Crash prediction models were generated and performed according to the Highway Safety Manual procedure for rural multilane highways ${ }^{7}$. The existing crash prediction models reported estimated annual frequencies of 91.0 Property Damage Only (PDO), 71.1 Injury, and 1.3 Fatal crashes within the 22 -mile study limits ${ }^{8}$. Because of the nature of traffic count collection, these estimates are considered conservative, resulting in the possible underestimation of future annual crash frequencies.

The proposed U.S. 60 Corridor Master Plan transforms the rural highway with at-grade intersections into a limited access freeway, and thus crash prediction for the proposed scenario was performed using the Highway Safety Manual's methodologies for freeways and interchanges. The proposed crash prediction model reports estimated annual frequencies of 68.6 property damage only, 33.5 injury, and 0.8 fatal crashes in the study area ${ }^{9}$.

[^1]While these models eliminate the inconsistencies of year-to-year crash prediction, they do not account for the presence of mixed vehicular and buggy traffic, as is present along this corridor near Diggins and Seymour. Nonetheless, the elimination of at-grade intersections and the implementation of interchanges, overpasses, and an outer road system would eliminate agricultural horses and buggies mixing with highspeed vehicular traffic on U.S. 60, thereby reducing overall traffic conflicts and increasing safety. Table 10 below shows a comparison of crash rates for the proposed and no-build scenarios in the design year of 2039.

TABLE 10. COMPARISON OF 2039 NO-BUILD AND PROPOSED SCENARIO CRASH RATES, BY SECTION

Section	Crash Frequency (crashes/year)								
	Property Damage Only		Injury		Fatal		Total		
	No- Build	Proposed	No-Build	Proposed	No-Build	Proposed	No-Build	Proposed	Annual Reduction
Rogersville	18.4	16.2	13.8	7.6	0.3	0.2	32.5	24.0	-8.5
Fordland	19.6	23.3	15.6	11.2	0.3	0.3	35.5	34.8	-0.7
Diggins	17.0	12.5	14.2	6.3	0.3	0.2	31.5	19.0	-12.5
Seymour	36.0	16.4	27.4	8.4	0.4	0.2	63.8	25.0	-38.8
U.S. 60 Corridor Crash Prediction							163.3	102.8	-60.5

EMISSIONS REDUCTIONS

Emissions output by idling vehicles can be directly attributed to the intersection control delay, allowing for the value of emissions reductions to be generated as part of the Traffic Delay Model for passenger vehicles and commercial trucks. Because the overall control delay is reduced in the proposed scenario, it is estimated that emissions would be reduced and an annual societal savings of $\$ 7,440$ would result ${ }^{10}$.

TABLE 11. AT-GRADE RAIL CROSSING CRASH SUMMARY

City	STREET	US DOT \#	RR M.P.	Crashes	INJURY STATUS	DATE
	Private Crossing	667621P	219.629	1	Uninjured	12/22/1994
	White Oak Road	667622W	220.600	4	Killed	7/23/2013
					Injured	11/3/1983
					Killed	4/21/1982
					Killed	11/21/1976
	Porter Crossing	667623D	222.119	2	Injured	5/24/1985
					Killed	11/20/1976
$\begin{aligned} & \text { ㅇ } \\ & \frac{C}{10} \\ & \hline \overline{0} \\ & \hline \text { ㅇ } \end{aligned}$	Ballpark Road	667629 U	223.919	1	Injured	2/28/1978
	S Iron Mountain Road	$667633 J$	225.410	3	Injured	3/23/2008
					Uninjured	1/29/1991
					Killed	1/31/1990
	Center Street	667635X	226.500	4	Killed	9/16/1990
					Injured	10/18/1987
					Injured	5/11/1985
					Uninjured	2/3/1984
	Private Crossing	667638 T	227.240	1	Injured	7/9/2007
	Route 2	$667640 \cup$	227.660	1	Uninjured	4/30/1998
	Tandy Road	667644 W	229.170	2	Uninjured	11/20/1993
					Injured	9/22/1987

City	STREET	US DOT \#	RR M.P.	Crashes	INJURY STATUS	DATE
$\begin{aligned} & \text { n } \\ & \frac{5}{0} \\ & \frac{0}{0} \end{aligned}$	Private Crossing	667647 S	230.660	2	Uninjured	12/6/2017
					Injured	12/4/2009
					Killed	12/4/2009
	Diggins Main Street	667650A	231.510	1	Uninjured	4/26/2010
	Box School Loop	667652 N	233.030	2	Uninjured	8/2/2014
					Killed	12/14/1992
	Short Road	667653 V	233.749	5	Uninjured	7/20/2012
					Uninjured	8/31/2003
					Uninjured	7/10/2001
					Killed	4/5/1999
					Killed	8/21/1991
	Bison Road	667654C	234.750	1	Injured	10/13/1989
	Commercial Street	667657X	236.590	1	Uninjured	12/21/1990
	Main Street	667659 L	236.689	3	Killed	6/20/1983
					Killed	1/30/1982
					Injured	10/17/1976
	Oak Lawn Road	667661M	238.219	4	Injured	2/12/2019
					Killed	12/5/2011
					Killed	
					Injured	8/4/1990
					Uninjured	5/20/1979
					Injured	6/4/1978
	Private Crossing	667662 U	238.750	1	Uninjured	7/13/2011
	Pee Wee Crossing	667664 H	239.950	3	Killed	8/31/1991
					Uninjured	6/19/1979
					Uninjured	12/29/1978
	Dewberry Road	667667D	241.379	2	Injured	1/24/1990
					Uninjured	1/30/1983

Highway/Rail Interaction

Due to the proximity between U.S. 60 and the BNSF Railway Thayer-North line, there is high interaction between rail traffic and vehicles crossing the railroad while entering and exiting U.S. 60. It was determined early in the study that the highway and rail needed to be analyzed as one (1) corridor, as it would do injustice to the other if focus was only placed on one (1). As both the highway and rail continue to increase in traffic, safety becomes of greater concern.

An analysis showing the vehicle-train interactions at the at-grade highway/rail crossings was performed alongside the highway engineering models. The analysis included crash prediction, exposure index ratings, and near-miss data.

RAIL CRASH HISTORY

Of the existing 36 at-grade highway/rail crossings, there have been 44 crash occurrences, including 13 injuries and 15 fatalities at 9 crossings along the corridor. Table 11 summarizes the at-grade crossing historical crash data, dating back 44 years to 1975.

Key observations in the data show that there have been 12 crashes in the past 15 years, including four (4) injuries and four (4) fatalities. These crashes hold greater weight, as any safety modifications to these crossings have generally occurred within the last 20 years. Of the total crashes that have occurred, 67% have occurred where crossing warning devices were only crossbucks (passive warning), while 33% have occurred at locations with lights and gates (active warning).

EXISTING \& PROPOSED RAIL CRASH PREDICTION

Crash prediction models were generated for the at-grade highway/rail crossings along the corridor for the existing and proposed conditions. Crash prediction models utilized formulas derived in the USDOT Railroad-Highway Grade Crossing

Handbook ${ }^{11}$, and consider various factors such as ADT, speed, lighting, warning devices, and historical crash data. Four (4) separate formulas are utilized to create the Rail Crash Prediction models:

- USDOT General Basic Accident Prediction (Existing Conditions)
- Final Accident Prediction (General Formula + Crash Data)
- Fatal Accident Probability
- Injury Accident Probability

Through the combination of the above formulas, the engineering team derived crash rates for the 36 at-grade crossings along the corridor. Twenty-five (25) year models were generated for the no-build and proposed conditions, and provided data for total, fatal, injury, and PDO crash rates.
As a result of the proposed improvements, a reduction in 15.71 crashes annually is predicted, including the reduction of 5.07 annual fatal and injury crashes. Most notably, all vehicle-train crash potential will be eliminated in the Diggins sections with the removal of all at-grade crossings and implementation of a full-access interchange and highway overpass at Highway A and Short Road, respectively. The detailed Rail Crash Prediction Model results are attached in Appendix B.

EXPOSURE INDEX RATINGS

The Exposure Index provides a numerical value of safety at each at-grade crossing. The State of Missouri has developed its own rating formula that considers ADT, speed, geometry, lighting, and many other factors that contribute to the safety of a crossing ${ }^{12}$. An adjusted exposure index rating (AEI) was used for analysis to account for the warning devices safety factor ${ }^{13}$. A higher exposure index rating represents a higher safety risk while a lower exposure index rating nets a safer crossing for vehicle-train interactions.

CMT evaluated the crossing Exposure Index ratings for each at-grade crossing within the study limits. The existing and proposed conditions were analyzed to determine locations for necessary safety improvements. As a result of the proposed U.S. 60 Corridor Master Plan, the closure of 20 at-grade crossings, upgrade of three (3) at-grade crossings, and implementation of one (1) rail overpass nets a projected adjusted Exposure Index rating reduction of 2028. Table 12 summarizes the Exposure Index model for each study section. The full Exposure Index model is attached in Appendix B.

TABLE 12. EXPOSURE INDEX SUMMARY

Section	Existing Avg. AEI	Proposed Avg. AEI	AEl Change
Rogersville	283.4	35.1	-248.3
Fordland	314.3	2.6	-90.6
Diggins	221.6	0.0	-221.6
Seymour	$1,499.2$	32.1	-1467.02
U.S. $\mathbf{6 0}$ Corridor	$\mathbf{2 , 0 9 7 . 4}$	$\mathbf{6 9 . 8}$	$\mathbf{- 2 , 0 2 7 . 5}$

NEAR MISSES

Near misses are occurrences self-reported by the railroad in which a train engineer thought a crash with a vehicle almost occurred. Railroads are required to document and report these instances under the Federal Railroad Administration (FRA) regulations.
The BNSF Railway Thayer-North line through Webster County has reported over 21 near-miss occurrences since 2012 (7 years), most recently as of October 2018 at Highway NN (Diggins) ${ }^{14}$. While these are not actual crashes, they cause alarm for safety as they had the potential to result in a fatal or serious injury crash between a train and vehicle. Most notable is the Iron Mountain Road crossing where there have been five (5) reported near misses in the past four (4) years. This is concerning as the Fordland High School is located off this road, meaning these near misses potentially involve high school students. Table 13 summarizes the Near-Miss Data received from the BNSF Railway.

[^2]TABLE 13. NEAR-MISS SUMMARY

Crossing	USDOT \#	RR M.P.	\# of Near Misses	Date
Front Street	667620H	219.05	1	10/31/2012
White Oak Road	667622W	220.6	2	8/31/2016
				4/30/2012
Porter Crossing Road	667623D	222.12	1	6/30/2012
Red Oak Road (Ballpark)	667629 U	223.92	1	4/30/2012
Iron Mountain Road	667633J	225.41	5	6/27/2017
				4/30/2015
				3/31/2016
				6/30/2015
				5/31/2015
Highway Z	$667640 \cup$	227.66	1	6/30/2014
Hummingbird Lane	667642H	228.64	1	4/30/2012
Honor Camp Lane	667645D	229.73	1	3/31/2015
Highway NN (S Diggins Main)	667650A	231.51	3	8/31/2012
				4/30/2011
				10/4/2018
W Box School (Garden)	667652N	233.03	1	2/28/2015
Short Road	667653 V	233.75	2	9/23/2017
				7/31/2013
E Box School (Bison)	667654C	234.75	1	7/31/2013
Oak Lawn Road	667661M	238.22	1	1/31/2013

Conclusions

The existing conditions of U.S. 60 and the adjacent BSNF Railway pose significant safety concerns for both vehicles and trains. The existing crash prediction models and historical crash data support the need for safety improvements along this corridor. The proposed master plan would eliminate most vehicular conflict points on U.S. 60, vastly improving safety, efficiency, and connectivity in each of the rural communities.

The consolidation of existing at-grade intersections into interchanges with a limited access facility would alleviate congestion and provide increased capacity for present and future traffic volumes. In terms of delay, the result of implementing the proposed U.S. 60 Corridor Master Plan would be a decrease in intersection control delay, but an increase in travel delay due to the use of an outer road system to access interchanges from roads with closed at-grade crossings. However, this would reduce the amount of traffic accessing U.S. 60 for local commute, ultimately increasing safety.

The resulting traffic analysis performed for the U.S. 60 Corridor Study yields results that highly support the implementation of safety-vehicle improvements by shifting the corridor towards limited access freeway status. The reduced vehicle and vehi-cle-train conflict points along the corridor would greatly improve the safety of the traveling public, and significantly reduce the crash frequency and severity.

U.S. 60 Corridor Master Plan

IV - U.S. 60 Corridor Master Plan

Introduction

Throughout the process of the study, U.S. 60 Corridor improvements were developed to increase safety, improve efficiency, and enhance resiliency along U.S. 60 and the adjacent BNSF Railway. Collaboration with all agency partners, municipalities, stakeholders and the public worked to refine these improvements to identify safety concerns, key access locations, and regional connectivity needs.

The public involvement process (Section II) sought public feedback that was centered around a publicly supported plan and backed by each of the local communities along the corridor. Many concerns and potential improvements were highlighted as a result of the public meetings, including locations of flooding, emergency response, high-traffic businesses, agricultural routes, and dangerous intersections and rail crossings.
A U.S. 60 Corridor Master Plan was developed for the portion of U.S. 60 and the BNSF Railway in southern Webster County. The result of the study provides a plan for a future limited access highway that consolidates at-grade intersections and rail crossings and maintains access via key grade-separated interchanges and overpasses. Selected at-grade rail crossings will remain open but will include safety upgrades. Master plan exhibits with detailed section views are attached in Appendix C.

ROGERSVILLE

The Rogersville Corridor (Section I) extends from the western Webster County line to approximately 0.5 miles east of the Porter Loop Intersection. This section includes the consolidation of six (6) at-grade intersections into one (1) interchange at White Oak Road/Peck Hollow Road, three (3) miles of outer roads, and one (1) at-grade rail-crossing upgrade.

RAIL IMPROVEMENTS

Improvements are recommended to upgrade the
 Porter Crossing Road at-grade rail crossing to include lights and gates. Roadway profile adjustments on Porter Crossing Road north of the tracks are recommended to improve sight distance at the crossing. Additionally, improvements are recommended at the Front Street at-grade crossing to include a pedestrian sidewalk crossing and security fencing along the BNSF Railway due to the many young children and students traveling to and from schools in the area.

WHITE OAK/PECK HOLLOW INTERCHANGE

A proposed interchange at White Oak Road/Peck Hollow Road will continue the limited access freeway further east, connecting to the limited access of U.S. 60 constructed in 2015. The interchange is expected to reduce delay due to vehicle idling at at-grade intersections and improve safety by reducing the frequency and severity of crashes.

U.S. 60 REALIGNMENT \& OUTER ROAD

Improvements are recommended to realign the westbound lanes of U.S. 60 to parallel the eastbound lanes from the existing Power Line Road intersection to approximately 0.25 miles east of the Porter Loop intersection. This realignment serves two purposes: reducing crash potential in the existing tight S-curve and allowing the existing lanes to serve as an outer road from Center Road (BUS 60) to Porter Crossing Road. The outer road will connect many private accesses, Porter Crossing Road, Center Road and the existing Copart business entrance, providing U.S. 60 highway access at the proposed interchange at White Oak Road.

REGIONAL CONNECTIVITY

Following the implementation of an interchange at White Oak Road/Peck Hollow Road, improvements are proposed to extend Farm Road 186 to Peck Hollow Road to increase the redundancy of east-west routes that supplement U.S. 60.

FORDLAND

The Fordland Corridor (Section II) extends from approximately 0.5 miles east of the Highway U intersection to approximately 0.75 miles west of the Highway A intersection. This section includes the consolidation of eight (8) at-grade intersections into three (3) interchanges located at Highway U, Highway FF (Burks Street), and Highway Z. In addition to three (3) grade-separated interchanges and rail overpasses, this consolidation will require the construction of nine (9) miles of outer roads and proposes the closure of 11 at-grade rail crossings (nine (9) public and two (2) private).

RAIL IMPROVEMENTS

Improvements are recommended along the rail corridor to greatly increase safety and improve the efficiency of the local transportation network. An at-grade rail-crossing upgrade is recommended at Red Oak Road (Ballpark Road) that upgrades warning devices to lights and gates. Additionally, the Front Street at-grade crossing is recommended to be upgraded to allow for the inclusion of a Quiet Zone through Fordland. Improvements for the Quiet Zone include security fencing, ADA sidewalk crossing, and median islands.

It is recommended to close nine (9) at-grade crossings in Fordland, including the following: Dutch Hill Road, Red Oak Road, Iron Mountain Road, Carpenter Street, Highway Z, Bluebird Lane, Hummingbird Lane, Tandy Road, and Honor Camp Lane. The closure of the above crossings will coincide with the roadway improvements (below) and will increase the safety for both train and vehicular traffic. The above closures and upgrades will result in a 311.2 reduction of the MoDOT Exposure Index rating. Private rail crossings will be maintained, except when the implementation of an outer road eliminates the need.

HIGHWAY U INTERCHANGE \& OVERPASS

A proposed interchange at Highway U/Red Oak Road is recommended to provide grade-separated access regionally to the south into Christian County and over the BNSF Railway to the north, providing connectivity to Dutch Hill Road and Red Oak Road. Additionally, an outer road both north and south of U.S. 60 is proposed to maintain adequate access from Porter Loop (Rogersville) to Washboard Road and from S Iron Mountain to Red Oak Road. The outer road will maintain existing access for several businesses and residential highway accesses that will close. The proposed outer road would run adjacent to U.S. 60 and provide highway access at two (2) interchange locations: Highway U and Highway FF. Additionally, with the implementation of an interchange at this location, traffic patterns are expected to shift, with more vehicles utilizing Highway PP and Black Oak Road to access U.S. 60, resulting in the need to replace \& widen a local wet-weather bridge and pave the surface of Black Oak Road.

HIGHWAY FF INTERCHANGE

An interchange at this location will provide grade-separated access to Highway FF (north) and Washboard Road (south). Highway FF is the main route into the City of Fordland. The removal of the existing at-grade intersection and implementation of an interchange is expected to prevent 1.66 crash occurrences annually. An interchange will also provide expedited access for emergency personnel, as the police and fire stations are located just north of U.S. 60 on Highway FF. Additionally, it is recommended to extend Brentlinger Drive to Iron Mountain Road with the construction of the Highway FF interchange to maintain business and residential access.

HIGHWAY Z INTERCHANGE \& RAIL OVERPASS

Highway Z was identified early in the project as a key connection to U.S. 60, serving significant regional traffic south into Christian County. The existing U.S. 60/Highway Z at-grade intersection is a high priority intersection, provided the high ADT, flooding issues, and U.S. 60 geometry at this location.

A full access interchange is recommended at this location to reduce the crash potential, enhance connectivity, and improve efficiency. Additionally, an interchange at this location will allow for the removal of the Highway PP/U.S. 60 intersection and re-aligning to connect to the Highway Z interchange north of the BNSF Railway. To maintain unimpeded connectivity into
the heart of Fordland, Barton Drive is recommended to be extended to Highway Z (south of the BNSF Railway), simultaneously with the closure of the Carpenter Street rail crossing. It is also recommended to extend Barton Drive (north of U.S. 60) approximately one (1) mile east, providing access and connectivity at the Highway Z interchange.
An interchange at Highway Z is expected to result in the reduction of 1.04 annual crash occurrences at U.S. 60/Highway Z in addition to the elimination of all vehicle-train exposure.

OUTER ROAD SYSTEM

An extensive outer road system on the south side of the BNSF Railway is recommended to span from Highway Z to Highway A in Diggins. The numerous at-grade rail crossings and highway intersections pose a significant safety concern for both vehicular and train traffic. The construction of a 25 -mile outer road would eliminate 20 rail crossings (15 public and five (5) private) and 33 at-grade intersections. The outer road would service traffic for the local north-south roads and would provide highway access via grade separated interchanges at Highway Z and Highway A.

INCIDENTAL ROADWAY IMPROVEMENTS

Incidental Roadway Improvements are recommended along the Corridor to enhance safety and efficiency of the road system. A high friction pavement treatment is recommended on U.S. 60 along the super-elevated reverse S -curves. This area of U.S. 60 has seen a considerable amount of crashes related to wet and icy conditions, resulting in vehicles sliding and hydroplaning off the embankment. In addition to pavement surface treatment, guardrail extension is also recommended to reduce the frequency of vehicles traveling off the roadway.

DIGGINS

The Diggins Corridor (Section III) extends from approximately 0.95 miles west of the existing Highway A intersection to approximately 0.5 miles west of the W Clinton Avenue Intersection in Seymour. This section includes the consolidation of eight (8) existing at-grade intersections into one (1) interchange located at Highway A and one (1) overpass located at Short Road/Killdeer Road. Additionally, all six (6) rail crossings will be eliminated, with the implementation and extension of an outer road system that provides full highway access at Highway A, overpass access at Short Road, and highway access connecting to the W Clinton Avenue Interchange in Seymour.

RAIL IMPROVEMENTS

The U.S. 60 and Rail Corridor through Diggins is the longest stretch within the study limits that the BNSF Railway parallels U.S. 60 in such proximity, as close as 65 feet at Short Road. This proximity creates significant safety concerns for vehicles entering and exiting the highway in the event of rail traffic. As such, the recommended plan calls for the elimination of all six (6) rail crossings (four (4) public and two (2) private) and their respective roadway intersections in the Diggins section and proposes the implementation of an outer road that parallels the rail through much of the Diggins area. Access over the BNSF Railway will be provided at the Highway A Interchange and Short Road overpass.

HIGHWAY A INTERCHANGE

A full-access interchange is recommended at Highway A to increase safety, provide connectivity over the rail, and improve the transportation network resiliency. The existing Highway A/U.S. 60 intersection has one of the highest crash rates on the corridor. Additionally, the vast diversity in vehicle use creates major safety issues in this area; this area of rural Webster County sees high traffic volumes of agricultural vehicles, including farm trucks, tractors, equipment, and horses and buggies.
The diverse traffic mix of vehicular traffic and slower-moving horses and buggies along the high-speed corridor has resulted in frequent and severe or fatal crashes. An interchange at this location would eliminate the need for slow-moving traffic to cross U.S. 60 or travel on the shoulder, improving traffic safety.
Additionally, Highway NN, south of U.S. 60, is recommended to be realigned to connect at the proposed Highway A inter-
change. This will provide direct access to U.S. 60 over the railroad to many agricultural vehicles, trucks, and residents. Hwy NN is a key route to a local rock quarry, and services hundreds of heavy-loaded trucks daily. This realignment will provide safer access from U.S. 60, and eliminate all risk associated with heavy trucks crossing an active rail line.
The Highway A Interchange is identified as a key improvement along the corridor, as Highway A serves as the Incident Relief Route from U.S. 60 to I-44 in Marshfield. In the event of a road closure on either highway, high traffic volumes are rerouted on this rural two-lane highway to maintain east-west travel. Such events result in high traffic congestion and safety concerns at the Highway A/U.S. 60 intersection. The recommended interchange will improve traffic flow, safety, and support a resilient transportation network with redundant routes.

SHORT ROAD OVERPASS

An overpass over U.S. 60 and the BNSF Railway is recommended at Short Road to provide adequate north-south connectivity. The study determined a full-access interchange was not needed in this area, as highway access is located approximately 2.5 miles to the west and 1.5 miles to the east. However, north-south access across U.S. 60 and the rail is necessary for much of the area residents and agricultural community to access their properties, residences, and businesses. An outer road system will maintain east-west access along the corridor.

OUTER ROAD SYSTEM

An extensive outer road system is recommended to maintain east-west connectivity, tying into the Fordland outer road system at Highway A and seamlessly connecting Diggins to Seymour at the W Clinton Avenue Interchange. An outer road is proposed north of U.S. 60 from Highway A, connecting to N Diggins Main Street, Highway O, Berry Road, and Short Road. The plan proposes tying into the existing Brumback Road alignment, providing access to Skyline Road in Seymour.
An outer road south of U.S. 60 and the BNSF railway will connect to the Fordland section at Highway NN, extend east to the existing Box School Loop, and connect into Seymour at the W Clinton Avenve Interchange and at Finley Falls Road.

HIGHWAY A CONNECTIVITY \& SHOULDER IMPROVEMENTS

Due to the high volumes of slow-moving horses and buggies along Highway A, the plan recommends improvements for permanent shoulder pull-offs. Currently, the existing aggregate pull-offs frequently wash out and are difficult to use in such condition. Constructing paved shoulder pull-offs will enhance the safety of users, amplify traffic safety, and improve traffic flow along this stretch of Highway A.
Additionally, it is recommended to provide an improved connection to Highway O, as U.S. 60 access is centered at the Highway A interchange. Road and intersection improvements are recommended along Diggins Road to Highway O, to improve road conditions for an increase in traffic.

SEYMOUR

The Seymour Corridor (Section IV) extends from approximately 0.5 miles west of the existing W Clinton Avenue intersection to the eastern Webster County line. This section includes the consolidation of 10 existing at-grade intersections into three (3) full-access interchanges. Additionally, recommendations include the elimination off four (4) at-grade rail crossings, upgrade of one (1) at-grade rail crossing and one (1) railroad overpass, with the construction of an extensive outer road system east of the City of Seymour. An outer road system on the west side of Seymour would connect the Diggins area to Seymour and U.S. 60 via an interchange at W Clinton Avenue.

RAIL IMPROVEMENTS

Improvements are recommended along the rail corridor to reduce vehicle-train exposure and increase safety of vehicles along the U.S. 60 and rail corridors. Improvements call for the upgrade of the Oak Lawn Road crossing to be widened and include lights and gates. Additionally, the implementation of an outer road system from Oak Lawn Road to Cedar Gap

Road allows for the closure of five (5) total crossings (three (3) public and two (2) private): Pewee Crossing Road, Mineral Road, and Dewberry Road. Traffic at these locations would be routed to a proposed interchange at Peewee Crossing Road.
Additionally, a railroad overpass is proposed to tie into Summit Avenue and the E Clinton Avenue/Highway K intersection (north). The unique positioning of the rail dividing the community in half creates the potential for emergency responders to be blocked from providing life-saving aid or prevents residents from accessing the FEMA Safe Room in the event of severe weather. An overpass at this location will improve the community's safety, resiliency, and provide additional connectivity for future growth.

Additional rail improvements are recommended at the Charles Street at-grade crossing to install security fencing and ADA sidewalk upgrades for safer access to the local elementary school and YMCA.

WEST CLINTON AVENUE INTERCHANGE

A full-access interchange and rail overpass is recommended to replace the W Clinton Avenue signalized intersection. An interchange at this location (just west of existing) would reduce the frequency and severity of crashes that occur at the existing signalized intersection. It is recommended that this interchange structure also span the BNSF Railway, providing safe and continuous access across the rail. The interchange is proposed to connect to a new road that extends from Bison Road to Forrest Road north of U.S. 60. An interchange at this location is expected to result in a reduction of 9.47 annual crashes and 2,482 annual minutes of control delay.

HIGHWAY K/HIGHWAY C INTERCHANGE

A full-access interchange is recommended to replace the existing at-grade signalized Highway K/Highway C intersection. These routes see high traffic volumes that serve local routes to eateries, schools, and gas stations as well as regional routes south to Ava (Douglas County) and north into rural Webster County. Additionally, intersection improvements are proposed at the Highway K/E Clinton Avenue intersection to improve safety and capacity at the interchange.

A new connector road is proposed to extend Steel Street to Highway K, providing adequate access and minimizing adverse travel for residential and heavy-industrial traffic with the closure of Skyline Road.

An interchange at this location would result in the highest safety benefit on the entire corridor, as the existing signalized intersection has seen the highest number of crashes, and is expected to reduce the frequency of crash occurrences by 6.98 crashes annually.

PEWEE CROSSING ROAD INTERCHANGE

A full access interchange is proposed at Peewee Crossing Road to provide access over the BNSF Railway and safer access while entering and exiting U.S. 60. An outer road system is proposed with the implementation of this interchange, allowing for the consolidation of several at-grade rail crossings and highway intersections. Additionally, it is recommended to realign the U.S. 60 eastbound lanes west of Peewee Crossing Road to improve roadway geometry and allow for the existing lanes to be utilized as an outer road from Oak Lawn Road. Additionally, Crosstie Road is proposed to be extended approximately 1.5 miles east to Highway O in Wright County, reducing the adverse travel required.

U.S. 60 GEOMETRY IMPROVEMENTS

The U.S. 60 eastbound lanes are recommended to be realigned to provide a gentler alignment and to reduce the frequency of crashes occurring in this sharper, highspeed curve.

Building a Connected Corridor

An immersive Public Involvement process was undertaken with this study to engage the public for concerns, design ideas, and community needs. While each section was developed individually and public meetings were held in respective communities, a comprehensive approach was taken in determining solutions for the U.S. 60 Corridor. Rural southern Webster County vitally depends on the transportation network for personal and business use and for the local economies to thrive. Consideration was taken to not leave properties landlocked due to a rail crossing closure or roadway intersection closure.

An extensive outer road system that effectively parallels U.S. 60 for much of the 22 -mile study length was conceptually designed to allow unimpeded traffic flow to maintain access, increase connectivity, and increase safety along the U.S. 60 Corridor.

Opinion of Probable Costs

An Engineer's Opinion of Probable Costs ("cost estimate") was prepared for the improvements recommended in the U.S 60 Corridor Master Plan. Table 10 below shows a summary of the estimated probable costs for each section of the corridor study. The cost opinions in 2019 dollars were developed by quantifying the conceptual design's major construction items and conceptual Rights-of-Way acquisition areas, and then applying representative unit prices based on local and statewide MoDOT contracts. Estimated costs for utility adjustments, preliminary engineering, construction engineering, and contingencies were added based on historical percentages of construction costs in collaboration with MoDOT. The cost opinions for each corridor section are included in Appendix D.
Though the corridor improvements would be phased over time to match available funding, it was assumed that all the work would be let for construction in 10 years or 2029. This was considered a reasonable amount of time for processing of railroad, MoDOT, and local-agency agreements, procuring of funding, and acquisition of R/W. Thus, the 2019 cost opinions were inflated to 2029 dollars using an assumed annual inflation rate of 2% and 3% for 10 years. The 2029-dollar amounts provide stakeholders with a reasonable target for programming and securing the necessary funds to implement the master-plan improvements. However, the cost opinions will need to be updated annually to reflect more detailed design studies, availability of funding, phasing of improvements, and actual inflation.
Probable costs were determined based on quantity estimates for conceptual roadway improvements. Unit costs are determined from historical local and statewide MoDOT contracts.

TABLE 14. OPINION OF PROBABLE COST SUMMARY

Corridor Section	Probable Cost (2029 Dollars)
Section I - Rogersville	$\$ 17,229,833$
Section II - Fordland	$\$ 41,185,462$
Section III - Diggins	$\$ 31,223,880$
Section IV - Seymour	$\$ 43,152,223$
U.S. 60 Corridor	$\$ 132,791,398$

Investment Need Analysis

Each alternative was analyzed independently of public opinion to determine which would provide the largest safety benefit and maintain a positive benefit-cost ratio. Analysis was conducted through the following process to illustrate which improvements provide the greatest net safety benefit:

1. Data collection consisted of site visits, interviews with key stakeholders, and utilization of the MoDOT, Federal Rail Administration (FRA), and BNSF databases.
2. Using the Missouri Exposure Index formula ${ }^{15}$ and USDOT Basic Crash Prediction, proposed improvements were compared to existing conditions.
3. Using the USDOT Basic and General Crash Prediction formulas ${ }^{16}$ simultaneously, accident prediction was based upon both crossing characteristics and historic crash data.
4. The societal crash costs for fatal, injury, and property damage were combined with accident prediction to estimate a crash cost per crossing.
5. The number of prevented crashes were converted to a monetary value to analyze the benefit of crossing upgrades/ closures. The Benefit-Cost Analysis was used to ensure the financial investment generates sufficient safety benefits.

[^3]

A Benefit-Cost Analysis (BCA) was performed on the proposed improvements to the U.S. 60 Corridor to provide analytics for making an investment-based decision on effectiveness, practicality, and implementation of the recommended improvements. The BCA value provides insight on a dollar-for-dollar return on investment, with a BCA value greater than 1.0 resulting in a net positive investment. Table 15 summarizes the results of the U.S. 60 Corridor BCA. As a result, the overall corridor BCA value was determined to be 1.53 on the conceptual cost estimate of approximately $\$ 132.8$ Million. The full BCA analysis model is attached in Appendix D .

TABLE 15. BCA ANALYSIS

	U.S. 60 Corridor Summary		
Corridor Section	Total Cost (2029)	Net Benefits	BCA Value
Section I - Rogersville	$\$ 17,229,833$	$\$ 9,850,790$	$\mathbf{0 . 5 7}$
Section II - Fordland	$\$ 41,185,462$	$\$ 41,400,981$	$\mathbf{1 . 0 1}$
Section III - Diggins	$\$ 31,223,880$	$\$ 44,998,180$	$\mathbf{1 . 4 4}$
Section IV - Seymour	$\$ 43,152,223$	$\$ 105,497,100$	$\mathbf{2 . 4 4}$
U.S. 60 Corridor	$\$ 132,791,398$	$\mathbf{\$ 2 0 3 , 3 2 9 , 0 5 0}$	$\mathbf{1 . 5 3}$

The BCA was split into two categories: roadway and railway. Net benefits of the proposed improvements were determined based on engineering best management practices, including formulas and assumptions provided by AASHTO, Highway Safety Manual (HSM), MoDOT, the USDOT, the FRA, and CMT.

QUANTIFIABLE BENEFITS

The implementation of the project will generate the following benefits that are quantified in the BCA:

1. Safety Benefits

- Elimination of conflicts between trains and vehicles through at-grade rail crossing and highway intersection consolidation will result in cost savings to both highway agencies and the BNSF Railway (liability insurance, litigation, property damage, forensic investigations, etc.)
- Reduction in annual and lifetime crash frequency and severity, which will result in an annual societal cost savings

2. Travel Time Savings

- Reduction in travel-time delays, which will result in an annual societal cost savings

3. Emissions Reduction

- Reduction in annual emissions pollution due to idling vehicles at blocked rail crossings and intersection control delay, resulting in indirect cost savings

4. Operations \& Maintenance Benefits

- Reduction of annual highway and rail operations and maintenance costs, which will result in direct annual cost savings

QUALITATIVE \& ECONOMIC BENEFITS

There are also numerous benefits to the project that are non-quantifiable given the lack of available data or which involve broader impacts to the regional and state economies. However, these benefits should also be considered, which further enhance the net positive impacts on the local, regional, and national economies.

An economic analysis (see Section V) was performed for the U.S. 60 Corridor in Webster County. Economic weighting factors were considered, including population growth, industry analysis, employment opportunities, retail gap analysis (supply vs. demand), and projected land use. As a result, a "soft" BCA value was determined based on a combined value of the quantifiable and qualitative benefits (see Section V).

Recommended U.S. 60 Corridor Master Plan

The U.S. 60 Corridor Master Plan is a long-term vision of the highway and rail corridor through southern Webster County. The study took a holistic approach to developing a connected corridor that not only improves safety and efficiency along the highway and rail line, but also maintains the local and regional connectivity that is vital to the local economies and rural residents. The master plan set forth in this study identifies areas of potential improvement, and prioritizes improvements based on quantitative analytics to justify the need for investment.
Overall, the U.S. 60 Corridor Master Plan recommends the consolidation of 49 at-grade highway access points to a limited access freeway with eight (8) full-access interchanges and one highway (1) overpass. Additionally, the plan recommends the closure of 21 at-grade rail crossings (16 Public and five (5) Private), two (2) at-grade rail crossing upgrades, one (1) rail overpass, and over 25 miles of outer roads. As a result of the recommended improvements, the corridor is expected to operate more efficiently and safely (see Section III - Corridor Traffic Analysis).

The total cost for improvements within the study is estimated at approximately \$132.8 Million (2029 dollars), with a Benefit-Cost Ratio of 1.53 , resulting in a positive return on investment. Improvements are anticipated to be implemented in phases based on funding availability and are further detailed in Section VII.
Figure 8 below identifies the eight (8) proposed highway interchanges and rail overpasses along the corridor. A detailed exhibit showing all improvements along the U.S. 60 Corridor is attached in Appendix C.

Figure 8. U.S. 60 Corridor Key Improvements

Economic Analysis \& Land Use Planning

V - Economic Analysis \& Land Use Planning

Introduction

The U.S. 60 Corridor Master Plan recommends the consolidation of at-grade intersections and the conversion of the existing highway to a limited access freeway with eight (8) full-access interchanges and one (1) highway overpass. To further understand the full impacts and opportunities associated with the recommended improvements, the study was expanded to include an economic analysis and land-use planning component to assess the potential opportunities for economic development as a result of the project. The U.S. 60 economic and land use planning analysis examined the demographic and economic performance of the communities along the U.S. 60 corridor in Webster County and assessed the projections of future retail growth. Additionally, the analysis developed land-use projections for residential, commercial, and industrial uses in each of the four communities along U.S. 60 in Webster County: Seymour, Diggins, Fordland, and Rogersville.
Webster County is located in southwest Missouri and is part of the Springfield, MO, metropolitan statistical area (MSA). There are four population centers located along U.S. 60 in Webster County (from west to east): Rogersville, Fordland, Diggins, and Seymour. In addition, the U.S. 60 corridor in Webster County crosses four zip codes: 65742, 65652, 65636, and 65746. This analysis utilized both zip code and community-level data to examine population, housing, and economic characteristics of each community.

Detailed analysis tables are attached in Appendix E. It should be noted that all economic analyses are performed based on existing infrastructure and the proposed recommendations in the U.S. 60 Corridor Study which are expected to generate and accelerate economic growth in the area.

Population and Housing Assessment

In order to assess the economic development potential for the U.S. 60 corridor, it is necessary to assess the current and projected population growth in each of the four (4) communities along the corridor. Table 12 provides population and household growth estimates from 2010 to 2019 and projections to 2024.
From 2010 to 2019, Rogersville's population grew from just over 3,000 to 3,883 resulting in an annual growth rate of 2.63%, the highest among the four (4) U.S. 60 communities in Webster County. The population in Rogersville is projected to grow by an average of 1.52% over the next five (5) years to 4,188 .
Fordland's population increased by an average of 0.83% annually from 800 in 2010 to almost 900 in 2019 . Over the next five years, Fordland is projected to grow by an average of 0.84% each year.

Diggins' population has grown from 299 in 2010 to 327 (1.0% annual growth). Over the next five (5) years, the Diggins community is projected grow to 342 with an annual growth rate of 0.90%.

Between 2010 and 2019, Seymour's population increased 0.54% per year from 1,921 to 2,016, and is projected to increase to 2,070 by 2024, an average annual increase of 0.53%. In comparing these four (4) communities to all of Webster County, only Rogersville has historical and future growth rates that exceed that of Webster County ${ }^{17}$.

TABLE 16. U.S. 60 POPULATION AND HOUSING PROJECTIONS

Statistic	Rogersville	Fordland	Diggins	Seymour	Webster County
Population					
2010 Census	3,073	800	299	1,921	36,202
2019 Estimate	3,883	862	327	2,016	39,607
2024 Projection	4,188	899	342	2,070	41,474
Annual Growth Rate 2010-2019	2.63\%	0.83\%	1.00\%	0.54\%	1.00\%
Annual Growth Rate 2019-2024	1.52\%	0.84\%	0.90\%	0.53\%	0.93\%
Households					
2010 Census	1,138	312	118	746	13,062
2019 Estimate	1,426	334	129	834	14,194
2024 Projection	1,536	348	136	875	14,844
Annual Growth Rate 2010-2019	2.54\%	0.76\%	1.00\%	1.25\%	0.93\%
Annual Growth Rate 2019-2024	1.50\%	0.82\%	1.06\%	0.96\%	0.90\%

Figure 9 highlights the historical and future population growth in the zip codes that encompass the U.S. 60 Corridor. Between 2009 and 2019, the population has grown from 16,206 to 19,712. Over the next ten (10) years, the population is expected to grow to 20,754, representing a 28% increase from 2009 to 2029^{18}.

Compared to the state (5\%) and national (11\%) growth rates, the U.S. 60 Corridor has significantly outpaced both and is one of the

Figure 9. U.S. 60 Population Growth (2009-2029) fastest growing areas in Missouri over the same time period. Additionally, when the populations are broken down into age generations, it was found that there is an increase in residents ages 19 and under, as well as those 55 to 85 . The only age groups projected to decline include those aged 45 to 54 years old.

Table 16 (above) also highlights the growth in households between 2010 and 2019 along with the projected growth over the next five (5) years in each community along the corridor. The number of households is expected to increase on average $1.50 \%, 0.82 \%, 1.06 \%$, and 0.96% annually for the Rogersville, Fordland, Diggins, and Seymour communities, respectively. Most notably, the U.S. 60 Corridor as a whole is projected to have an average annual household increase greater than Webster County as a whole.
Table 17 provides information on the availability and price of housing in each of the four (4) communities along with Webster County. It is important to note that each of the four (4) communities have total occupancy rates, owner-occupancy rates, and median home values below the average for Webster County, and higher renter-occupancy rates.
Rogersville has the highest occupancy rate (89.5\%), median home value ($\$ 120,100$), and housing stock (1,411) among the four (4) U.S. 60 corridor communities. Diggins has the highest owner-occupancy rate at 72.5%, while Fordland has the highest renter-occupancy rate at $46.3 \%{ }^{19}$.

TABLE 17. U.S. 60 HOUSING AVAILABILITY AND PRICE

	Diggins	Fordland	Rogersville	Seymour	Webster County
Total Housing Units	140	418	1,411	985	14,650
Occupied Housing Units	120	365	1,263	834	
Occupancy Rate	85.7%	87.3%	89.5%	84.7%	9,311
Median Home Value	$\$ 86,900$	$\$ 81,300$	$\$ 120,100$	$\$ 76,500$	$\$ 122,500$
Owner-Occupied Rate	$72.5 \%(87)$	$53.7 \%(196)$	$63.9 \%(807)$	$65.1 \%(543)$	$72.8 \%(9,684)$
Renter-occupied Rate	$27.5 \%(33)$	$46.3 \%(169)$	$36.1 \%(456)$	$34.9 \%(291)$	$27.2 \%(3,627)$

[^4]
Economic Development and Job Growth Projections

The Webster County and U.S. 60 Corridor economies have seen steady improvement since the 2009 recession. The Webster County unemployment rate has fallen from the all-time high of 10.5% in 2010, to an all-time low of 3.9% in 2019 $\left(\right.$ Figure 10) ${ }^{20}$. The U.S. 60 Corridor has seen steady job growth since 2009 with the number of jobs increasing from 4,049 to 4,387 in 2019, with the projected

Figure 10. Webster County Unemployment growth resulting in 4,945 jobs by 2029 .
Table 18 highlights changes in the number of jobs in the four (4) communities in key industry sectors. The fastest growing industries along the corridor over the past ten (10) years were manufacturing (480 jobs, 158% increase) and health care and social assistance with 158% and 139% increases, respectively. Both government and retail trade have seen significant decreases in jobs since 2009 with a 12% \& 15% decrease, respectively. Over the next ten years, manufacturing, health care, and social assistance are projected to continue to grow, in addition to continued growth in the high earning sectors such as wholesale trade (9% growth) and transportation and warehousing (20% growth).

TABLE 18. U.S. 60 CORRIDOR JOB CHANGE BY INDUSTRY

Industry	2019 Jobs	2009-2019 Change	2019-2029 Projected Change	Average Earnings Per Job (2018)
Government	799	$-12 \%(-105)$	$-2 \%(-15)$	$\$(48,826$
Manufacturing	785	$158 \%(481)$	$36 \%(280)$	$\$ 45,428$
Construction	688	$16 \%(94)$	$11 \%(78)$	$\$ 35,198$
Retail Trade	436	$-15 \%(-77)$	$-4 \%(-16)$	$\$ 29,981$
Health Care and Social Assistance	322	$139 \%(187)$	$38 \%(121)$	$\$ 37,561$
Accommodation and Food Services	267	$9 \%(22)$	$15 \%(41)$	$\$ 14,535$
Transportation and Warehousing	191	$22 \%(35)$	$20 \%(38)$	$\$ 68,280$
Wholesale Trade	137	$0 \%(0)$	$9 \%(13)$	$\$ 92,446$
Finance and Insurance	104	$-22 \%(-29)$	$-16 \%(-17)$	

Industry specialization along the corridor is key for potential investors to be able to identify prime locations for future development and industry growth. Figure 11 visually depicts the level of specialization and projected growth of specialization over the next ten (10) years as a location quotient. A location quotient (LQ) is a measure of the level of specialization in a region of an industry, occupation, or other demographic measure compared to a larger geographic area, and it is calculated by dividing the specialization of a particular industry in one region by the national or state level special-

[^5]ization in the same industry. The resulting $L Q$ represents industry concentration in a specific region compared to the nation. $A L Q$ of 1.0 means that the region and the nation have the same relative specialization in an industry, while a $L Q$ below 1.0 means that the region is at a competitive disadvantage compared to the nation and a $L Q$ above 1.0 means the region has a competitive advantage in that industry. The LQ in Figure 11 also represents the current employment level by the scale of the ellipse.

The economic analytics resulted in high LQ values of Manufacturing (2.7), meaning this industry is expected to grow approximately 30% in the next ten (10) years and employment is expected to significantly increase. Overall, most industry sectors in the region will continue to grow in terms of specialization. The analysis suggests that communities along the U.S. 60 corridor should focus on enhancing and fostering their existing and projected advantage in manufacturing while attempting to grow complementary sectors such as transportation and warehousing.

In addition to industry sector growth, the analysis included the historical and projected growth by occupation. Overall, the top nine (9) occupation categories in the region are expected to add employment over the next ten (10) years. The top occupation, Construction and Extraction, has seen robust growth since 2009 of 12% and is expected to grow by another 10% in the next ten (10) years. This growth will enhance the region's specialization in this occupation, which has a LQ of 2.70 .

Additionally, production occupations that provide manufacturing support have seen incredible growth of 119% since 2009 and are projected to grow by an additional 30% over the next ten (10) years, significantly increasing the occupation's LQ of 2.05. Given the region's advantage in manufacturing, coupled with an LQ of 1.10, transportation and material-moving jobs is projected is have high regional growth, with an estimated 12% increase over the next ten (10) years.

Retail Growth Projections

U.S. 60 is an essential and vital roadway for economic and retail activity in southern Webster County. A key component of the U.S 60 Corridor plan is to assess the potential for expanded retail activity in Rogersville, Fordland, Diggins, and Seymour. CMT relied on ESRI Retail Marketplace Data, which uses census, business-level, and geographic information to estimate retail expenditures and individual spending by those who reside in a specific area for 13 common retail sectors. This allowed for the calculation of the following for each community:

- Retail potential (Demand) - Spending individuals who live in an area
- Retail Sales (Supply) - Actual retail sales in an area
- Positive Retail Gap - Less supply of retail sales than demand (opportunity to build retail base)
- Negative Retail Gap - More supply of retail sales than demand (ability to attract out of area spending)

ERSI data available only provides estimates on business size and numbers within each community. While the data in this analysis provides an estimated number of businesses, it may not reflect the actual amount in each community. This data is designed to provide a generalized projection of the local economies, and further analysis should be performed to determine specific economic develop opportunities.

ROGERSVILLE

Table 15 presents the retail gap analysis for Rogersville. The retail sectors of motor vehicle and parts dealers, furniture stores, health and personal care stories, and gasoline stations have a negative retail gap, thus Rogersville is attracting people from surrounding areas to spend their dollars in these areas. The retail sectors with greatest positive retail gap (more local demand than supply) include general merchandise and building materials, garden, and supply stores.
Overall, Rogersville has $\$ 5.6$ million more in demand than supply of retail. This analysis, coupled with the growing population, suggests there is an opportunity to build upon the 31 retail business establishments by attracting new retail opportunities that supply both the local demand and the attracted demand from outside the immediate community.

TABLE 19. ROGERSVILLE RETAIL GAP ANALYSIS

Industry Group	Demand (Retail Potential)	Supply (Retail Sales)	Retail Gap	Number of Businesses
Motor Vehicle \& Parts Dealers	\$8,697,950	\$10,717,411	-\$2,019,461	8
Furniture \& Home Furnishings Stores	\$1,289,487	\$1,332,729	-\$43,242	1
Electronics \& Appliance Stores	\$1,183,922	\$300,890	\$883,032	1
Building Materials, Garden, and Supply Stores	\$2,868,041	\$1,005,704	\$1,862,337	2
Food \& Beverage Stores	\$6,433,666	\$5,603,207	\$830,459	1
Health \& Personal Care Stores	\$2,280,256	\$5,255,683	-\$2,975,427	3
Gasoline Stations	\$4,612,355	\$8,556,232	-\$3,943,877	2
Clothing \& Clothing Accessories Stores	\$1,718,390	\$460,906	\$1,257,484	1
Sporting Goods, Hobby, Book, \& Music Stores	\$1,155,317	\$70,168	\$1,085,149	1
General Merchandise Stores	\$7,487,238	\$914,179	\$6,573,059	1
Miscellaneous Store Retailers	\$1,613,317	\$0	\$1,613,317	0
Nonstore Retailers	\$443,161	\$0	\$443,161	0
Food Services \& Drinking Places	\$4,260,974	\$4,174,635	\$86,339	10
Total	\$44,044,074	\$38,391,744	\$5,652,330	31

FORDLAND

Table 20 presents the retail gap analysis for Fordland. There are only four (4) retail business establishments in Fordland and combine for $\$ 1.4$ million in annual sales. However, the residents of Fordland spend approximately $\$ 8.5$ million annually in retail establishments, resulting in a negative $\$ 7.1$ million retail gap, and opportunity to attract businesses in all of the 13 retail categories to increase economic development.

TABLE 20. FORDLAND RETAIL GAP ANALYSIS

Industry Group	Demand (Retail Potential)	Supply (Retail Sales)	Retail Gap	Number of Businesses
Motor Vehicle \& Parts Dealers	\$1,786,050	\$0	\$1,786,050	0
Furniture \& Home Furnishings Stores	\$231,478	\$0	\$231,478	0
Electronics \& Appliance Stores	\$210,267	\$0	\$210,267	0
Building Materials, Garden, and Supply Stores	\$591,486	\$0	\$591,486	0
Food \& Beverage Stores	\$1,246,968	\$788,121	\$458,847	2
Health \& Personal Care Stores	\$464,851	\$0	\$464,851	0
Gasoline Stations	\$941,293	\$0	\$941,293	0
Clothing \& Clothing Accessories Stores	\$307,505	\$0	\$307,505	0
Sporting Goods, Hobby, Book, \& Music Stores	\$210,499	\$0	\$210,499	0
General Merchandise Stores	\$1,411,184	\$577,612	\$833,572	1
Miscellaneous Store Retailers	\$325,042	\$0	\$325,042	0
Nonstore Retailers	\$89,892	\$0	\$89,892	0
Food Services \& Drinking Places	\$767,767	\$39,880	\$727,887	1
Total	\$8,584,282	\$1,405,613	\$7,178,669	4

DIGGINS

The analysis shows that there is currently only one (1) retail business establishment in the village that produces $\$ 36,000$ in annual sales (Table 21). While there may be other small businesses within the community, there is only one (1) large enough to appear in the ESRI database. The residents of Diggins generate approximately $\$ 3.9$ million in retail demand each year, resulting in a $\$ 3.8$ million annual negative retail gap. Given the community's relatively small population base, it is unlikely to attract a retail establishment in each retail sector. The results suggest targeted attraction efforts in the areas of highest demand, such as motor vehicle parts, along with focus on retail establishments that improve quality of life such as restaurants, may prove to be an effective strategy.

TABLE 21. DIGGINS RETAIL GAP ANALYSIS

Industry Group	Demand (Retail Potential)	Supply (Retail Sales)	Retail Gap	Number of Businesses
Motor Vehicle \& Parts Dealers	\$807,632	\$0	\$807,632	0
Furniture \& Home Furnishings Stores	\$104,671	\$0	\$104,671	0
Electronics \& Appliance Stores	\$95,080	\$0	\$95,080	0
Building Materials, Garden, and Supply Stores	\$267,463	\$36,119	\$231,344	1
Food \& Beverage Stores	\$563,866	\$0	\$563,866	0
Health \& Personal Care Stores	\$210,201	\$0	\$210,201	0
Gasoline Stations	\$425,642	\$0	\$425,642	0
Clothing \& Clothing Accessories Stores	\$139,051	\$0	\$139,051	0
Sporting Goods, Hobby, Book, \& Music Stores	\$95,184	\$0	\$95,184	0
General Merchandise Stores	\$638,123	\$0	\$638,123	0
Miscellaneous Store Retailers	\$146,982	\$0	\$146,982	0
Nonstore Retailers	\$40,647	\$0	\$40,647	0
Food Services \& Drinking Places	\$347,175	\$0	\$347,175	0
Total	\$3,881,717	\$36,119	\$3,845,598	1

SEYMOUR

There are an estimated 33 retail business establishments in Seymour that generate over $\$ 24$ million in annual retail sales (Table 22). This level of sales generates the local retail demand of $\$ 17$ million, resulting in a negative retail gap of over $\$ 7$ million. Much of this gap is centered on two key sectors: food-and-beverage stores and health-and-personal care stores, suggesting many residents from nearby towns and rural areas are driving to Seymour for food shopping and medical needs.

Despite the overall negative retail gap, there are several noticeable areas for retail expansion in Seymour. While Seymour does have some motor vehicle and parts sales, it is losing $\$ 1.4$ million annually to sales outside of the area, resulting in opportunity for increased industry and local sales within the City of Seymour.

TABLE 22. SEYMOUR RETAIL GAP ANALYSIS

Industry Group	Demand (Retail Potential)	Supply (Retail Sales)	Retail Gap Businesses	
Motor Vehicle \& Parts Dealers	$\$ 3,665,398$	$\$ 2,214,165$	$\$ 1,451,233$	5
Furniture \& Home Furnishings Stores	$\$ 440,001$	$\$ 0$	$\$ 440,001$	0
Electronics \& Appliance Stores	$\$ 423,508$	$\$ 343,874$	$\$ 79,634$	1
Building Materials, Garden, and Supply Stores	$\$ 1,165,399$	$\$ 1,390,708$	$-\$ 225,309$	3
Food \& Beverage Stores	$\$ 2,596,783$	$\$ 11,252,596$	$-\$ 8,655,813$	7
Health \& Personal Care Stores	$\$ 961,960$	$\$ 5,209,099$	$-\$ 4,247,139$	2
Gasoline Stations	$\$ 1,937,026$	$\$ 0$	$\$ 1,937,026$	0
Clothing \& Clothing Accessories Stores	$\$ 580,622$	$\$ 84,652$	$\$ 495,970$	

Industry Group	Demand (Retail Potential)	Supply (Retail Sales)	Retail Gap	Number of Businesses
Sporting Goods, Hobby, Book, \& Music Stores	$\$ 421,068$	$\$ 248,822$	$\$ 172,246$	
General Merchandise Stores	$\$ 2,829,034$	$\$ 2,281,869$	$\$ 547,165$	2
Miscellaneous Store Retailers	$\$ 694,160$	$\$ 596,349$	$\$ 97,811$	3
Nonstore Retailers	$\$ 208,145$	$\$ 0$	$\$ 208,145$	4
Food Services \& Drinking Places	$\$ 1,479,993$	$\$ 1,058,329$	$\$ 421,664$	0
Total	$\$ 17,403,097$	$\$ 24,680,463$	$-\$ 7,277,366$	5

U.S. 60 Corridor New Retail Demand Potential

Using the data in the preceding sections, projections of future retail demand over the next ten years were developed. Per Capita retail spending estimates were projected using population projections and existing retail spending for each community. Ten (10) year projections were generated by applying the population compounded annual growth rate (CAGR) to each population base, in conjunction with the projected new residents. A $\$ 300 /$ SF assumption was applied to estimate the potential net new retail square footage in the next ten (10) years. A future reduction in SF/Capita assumption was applied to account for online shopping utilizing previous Webster County studies, including the Marshfield Economic Development Plan.
Table 23 presents the results of the new retail potential analysis. Rogersville has the highest retail potential at over \$7 million in potential new spending, resulting in the potential for 19,000 square feet of new retail space over the next ten (10) years. New economic development is projected to be driven by the significant population growth and the high retail spending per capita. Seymour has the second highest retail potential with over \$940,000 in potential new retail spending, resulting in 2,500 square feet in new potential retail space over the next ten (10) years.

TABLE 23. U.S. 60 CORRIDOR NEW RETAIL DEMAND POTENTIAL

Indicator	Rogersville	Fordland	Diggins	Seymour	Webster County
Retail spending per capita	$\$ 11,343$	$\$ 9,959$	$\$ 11,871$	$\$ 8,632$	$\$ 10,428$
Population CAGR (2019-2024)	1.52%	0.84%	0.90%	0.53%	0.93%
Projected 10-Year Population Growth	634	76	31	109	3,822
Potential New Retail Spending	$\$ 7,190,844$	$\$ 752,750$	$\$ 364,289$	$\$ 944,795$	$\$ 39,855,077$
Potential New Retail SF (\$300/sf)	23,969	2,509	1,214	3,149	132,850
Future Reduction in SF per capita (20\%)	4,794	502	243	630	26,570
Potential Net New Retail SF	19,176	2,007	971	2,519	106,280

Land Use Projections

The economic development analysis above was used to project land use demand within the study area along the U.S. 60 Corridor. Land uses were broken down into three different categories: residential, commercial (retail), and industrial (manufacturing and logistics).

For purposes of analysis, all growth was assumed to occur within the incorporated limits of Rogersville, Fordland, Diggins or Seymour and not in unincorporated Webster County. Actual land use is expected to occur both within and outside of these incorporated limits. These municipalities are best positioned to provide needed utility services, such as water, sewer, electricity, and telephone/cable for new land development, whereas private water wells and treatment plants would likely be needed outside of these areas. Finally, roadway pavement and capacity within the four (4) cities is assumed to be more capable to accommodate new development and higher traffic counts compared to roads in unincorporated areas.

Residential Land Use

Residential land use projections were projected over the next ten (10) years and are based on three (3) factors: projected population growth, average household size, and expected new-dwelling unit density (Table 24).

TABLE 24. HOUSING NEEDS

Municipality	Total Additional Residents in $\mathbf{2 0 2 9}$	Average Household Size	New Dwelling Units Needed for Additional Residents
Rogersville	634	2.70	231
Fordland	76	2.56	29
Diggins	31	2.53	14
Seymour	109	2.52	43

Dwelling-unit density is determined utilizing generalized current housing patterns for each community based upon available aerial photography and zoning maps. Compared to similar small Midwest community development patterns, the following estimates were made for the U.S. 60 Corridor and summarized in Table 25:

- 70\% of the existing housing supply is detached single-family residential
- 20% is two-family (duplex) housing
- 10\% is multi-family housing

TABLE 25. NEW DWELLING UNITS BY TYPE THROUGH 2029

Municipality	Detached Single Family (70\% of new dwelling units)	Two Family (20\% of new dwelling units)	Multi-Family (10\% of new dwelling units)
Rogersville	162	46	23
Fordland	20	6	3
Diggins	10	3	1
Seymour	30	9	4

Table 26 summarizes the projected acreage required to accommodate the projected new housing in each community. The following standards were utilized for required residential land development:

- 4 dwelling units per acre ($0.25 / \mathrm{Ac}$) for single-family detached development
- 6 dwelling units per acre ($0.14 / \mathrm{Ac}$) for two-family (duplex) development
- 11 dwelling units per acre ($0.09 / \mathrm{Ac}$) for multi-family development

Land requirements for the 317 total projected housing units along the U.S. 60 Corridor are estimated to require 67.6 acres, with 55.5 acres for new single-family development, 9.25 acres for duplex development, and 2.85 acres for multifamily development.

Land projections do not include the land necessary for community infrastructure, services, and amenities such as fire \& police, parks and recreation, public utilities, etc. Such infrastructure and amenities would increase the total acreage to support the residential demand by approximately 10-20\%, depending on land use efficiency.

TABLE 26. RESIDENTIAL LAND USE DEMAND FOR POPULATION GROWTH THROUGH 2029

	Residential Development Land Needs			
Municipality	Single Family (4 units/Ac)	Two-Family $(7$ units/Ac)	Multi-Family (11 units/Ac)	TOTAL (Acres)
Rogersville	40.5	6.5	2.10	49.10
Fordland	5.0	1.0	0.25	6.25
Diggins	2.5	0.5	0.10	3.10
Seymour	7.5	1.25	0.40	9.15
TOTAL	$\mathbf{5 5 . 5}$	$\mathbf{9 . 2 5}$	$\mathbf{2 . 8 5}$	$\mathbf{6 7 . 6}$

Commercial and Industrial Land Use

In this analysis, Commercial and Industrial sectors determined by the North American Industry Classification System (NAICS) codes were split into three (3) categories: industrial, commercial, and office (Table 27). Assumptions were made for land-to-building ratios and the number of employees per acre by industry.

TABLE 27. INDUSTRY CLASSIFICATIONS

NAICS	Description
23	- Construction/Extraction
31	- Manufacturing
42	- Wholesale Trade
44	- Retail Trade
48	- Transportation and Warehousing
51	- Information
52	- Finance and Insurance
53	- Real Estate and Rental and Leasing
54	- Professional, Scientific, and Technical Services
55	- Management of Companies and Enterprises
56	- Administrative and Support and Waste Management and Remediation Services
61	- Educational Services
62	- Health Care and Social Assistance
71	- Arts, Entertainment, and Recreation
72	- Accommodation and Food Services
81	- Other Services (except Public Administration)
90	- Government
- Industrial - Commercial Office	

Land-to-building ratios were assumed to be 3:1, based upon average commercial land use standards of 2.5:1 to 3.5:1 in the Midwest. Other components outside of the structure necessary include parking lots, stormwater detention areas, and building setbacks as required by zoning codes.
Assumptions for employee-to-land ratios vary based on whether the industry sector is more employee-intensive or vehicle/ equipment-intensive. The assumptions used are as follows:

- Office Use - 20 Employees/acre
- Commercial Use - 20 Employees/acre
- Industrial Use - 18 Employees/acre

ROGERSVILLE

The Rogersville section is projected to generate 339 jobs over the next ten (10) years, with total annual earnings of approximately $\$ 14,189,000$ (see Appendix E). It is important to note that not all projected jobs will be "new" jobs, as many employees change industries in which they work as a result of factors including new job skills, changes in the economy, and lifestyle preferences (such as job commute times, work schedules, etc.).

Therefore, only 20-30\% of the 339 projected jobs are estimated to be those directly related to new job growth in Rogersville. If 20% of projected jobs are new to Rogersville (68 new jobs), the community can expect a $\$ 2,838,000$ total positive benefit from 2019 to 2029. If 30% of projected jobs are new to Rogersville (102 new jobs), a \$4,257,000 total positive benefit from 2019 to 2029 can be expected.

Rogersville is expected to need approximately 17 acres of developable land to accommodate job growth through 2029. The majority of this acreage (80%) will be needed for industrial uses. Additionally, there is an estimated need of approximately 2.5 acres for office space and one (1) acre of commercial land space within the next ten (10) years.
TABLE 28. ROGERSVILLE LAND USE PROJECTIONS BY INDUSTRY CATEGORY (2019-2029)

Land Use	Projected Jobs through 2029	Net Additional SF Needed (through 2029)	Acres Needed* (3:1 land to building ratio)	\% of Total

*Projected Jobs by Employees per Acre (per Table 26)
Locational needs for industrial uses are generally tied to proximity and access to transportation systems. U.S. 60 will be critical for both short and long-haul vehicles. The proposed White Oak Road Interchange on the east side of the city offers access to U.S. 60, existing industrial zoning in the immediate vicinity, and available vacant land that could accommodate these uses. Additionally, Highway B leading north out of Rogersville offers access to I-44, 15 miles to the north via the Northview Interchange.

Since residents and commuters have needs that are met by commercial retail establishments such as food, clothing, home goods, etc., job growth and population growth positively impacts retail spending. New retail spending in Rogersville as a result of job and population growth from 2019-2029 is estimated to be \$7,191,000 (\$719,000 annually).

FORDLAND

The Fordland section is expected to generate 104 jobs, with total annual average earnings of \$6,208,000 (see Appendix $\mathrm{E})$.

With an estimated 20-30\% of projected jobs expected to be directly related to new job growth, the following assumptions are expected:

- If 20% of projected jobs are new to Fordland (21 new jobs), the community can expect a $\$ 1,242,000$ total positive benefit from 2019 to 2029.
- If 30% of projected jobs are new to Fordland (31 new jobs), a \$1,863,000 total positive benefit from 2019 to 2029 can be expected.
TABLE 29. FORDLAND LAND USE PROJECTIONS BY INDUSTRY CATEGORY (2019-2029)

Land Use	Projected Jobs through 2029	Net Additional SF Needed (through 2029)	Acres Needed* (3:1 land to building ratio)	\% of Total
Office	47	23,532	1.62 acres	$\mathbf{3 5 . 0 \%}$
Commercial	9	6,534	0.45 acres	$\mathbf{9 . 7 \%}$
Industrial	46	37,107	2.56 acres	$\mathbf{5 5 . 2 \%}$
TOTALS	102	$\mathbf{6 7 , 1 7 3}$	$\mathbf{4 . 6 3}$ acres	$\mathbf{1 0 0 \%}$

*Projected New Jobs divided by Employees per Acre (per Table 22)
Fordland is expected to need approximately 4.63 acres of developable land to accommodate job growth through 2029. The majority of this acreage (55\%) will be needed for Industrial uses. Additionally, there is a need of 1.6 acres for office use and approximately 0.50 acres of commercial land use in the next ten (10) years. New retail spending in Fordland as a result of growth from 2019-2029 is estimated to be \$753,000 (\$75,300 annually).

As U.S. 60 is critical for the short and long-haul of goods along the corridor, the proposed Burks Street (Highway FF) interchange offers opportunities for office, commercial, and industrial uses with convenient access to U.S. 60 within city limits. Locating within existing city limits increases the availability of utility services as well as public safety needs, including fire and police.

While presently outside city limits, the Highway U Interchange west of Fordland and the Highway Z Interchange east of Fordland also offer north-south access to communities in those directions. These areas have the potential to be annexed in the future, making them prime locations for industrial uses in the long term.

DIGGINS

Due to the lack of data on industry employment projections, the land-use projection method used for the other municipalities in this study has been modified for Diggins. The following two approaches were utilized:

1. "PRORATED JOB ALLOCATION" METHOD

The Prorated Job Allocation method utilizes the total projected additional jobs in Rogersville, Fordland and Seymour within seven industry areas and assigns jobs in these same industries based on the percent of population residing in Diggins compared to the urban population in the study area as a whole (see Appendix E).

The result assigns additional jobs by industry based on Diggins 2019 population as compared to the total 2019 population within all four cities. Note that 2019 population estimates in unincorporated Webster County are not utilized as employment growth is assumed to occur within the four cities in the study area and not the county due to the availability of utility services such as water and sanitary sewer.

Since Diggins has 5\% of the population within the incorporated areas, the Prorated Job Allocation method assumes Diggins is likely to receive a similar 5\% share of additional jobs (28 additional jobs) through 2029.

As only $20-30 \%$ of the 28 projected jobs are estimated to be those directly related to new job growth in Diggins, the following projections result:

- If 20% of projected jobs are new to Diggins (6 new jobs), the community can expect a $\$ 256,000$ total positive benefit from 2019 to 2029.
- If 30% of projected jobs are new to Diggins (8 new jobs), a \$383,000 total positive benefit from 2019 to 2029 can be expected.

2. "PERCENTAGE OF COMPARABLE PEER CITY" METHOD

The Percentage of Comparable Peer City method is similar to the Prorated Job Allocation method, except that job growth is based on the city most similar in size to Diggins in the study area: Fordland. With an estimated 2019 population of 327, (compared to Fordland's 862), Diggins' population is approximately 38\% that of Fordland. Thus, Diggins is expected to have 40 additional jobs.
At the 20-30\% new job growth, the following projections are made:

- If 20% of projected jobs are new to Diggins (8 new jobs), the community can expect a $\$ 484,000$ total positive benefit from 2019 to 2029.
- If 30% of projected jobs are new to Diggins (12 new jobs), a $\$ 726,000$ total positive benefit from 2019 to 2029 can be expected in Diggins.
While the absence of industry employment projection data makes these predictive models necessary, both methods are unable to account for unique elements of local conditions and should therefore be used with caution as they assume that the economic trends in other municipalities also will occur in Diggins. With these limitations in mind, Diggins is anticipated to see between 28-40 additional jobs in the industries listed in Appendix E, with 6-12 of these jobs being directly related to new job growth.

TABLE 30. DIGGINS LAND USE PROJECTIONS BY INDUSTRY CATEGORY (2019-2029)**

| Land Use | Projected Jobs through
 $\mathbf{2 0 2 9}$ | Net SF Needed (through
 2029) | Acres Needed (at a 3:1
 land to building ratio)* | \% of Total |
| :---: | :---: | :---: | :---: | :---: | (2-19 | Office |
| :---: |

*Projected Jobs divided by Employees per Acre (per Table 22)
**Note: Table 25 provides a range of numbers based on results in Appendix E
As Table 26 illustrates, Diggins is expected to need between 1.25 and 2.0 acres of developable land to accommodate job growth through 2029. Most of this acreage will be needed for industrial uses.
Despite the challenges in estimating population, job growth and land use needs in Diggins, the city has sufficient developable land available for both commercial (6.5 acres) and industrial (4 acres) uses on both sides of U.S. 60. Additionally, Diggins offers Highway A, connecting the U.S. 60 Corridor directly to I-44 approximately 15 miles north in Marshfield. For south-bound traffic from Diggins, Highway NN connects to Highway Z. With U.S. 60 offering east and west connections, roadway accessibility in all four directions suggests that the growth estimates for Diggins through 2029 may be more positive than presented here.

SEYMOUR

The Seymour section is expected to generate 160 additional jobs, with approximately $\$ 6,715,000$ in total annual earnings.

At the assumed 20-30\% jobs tied directly to new jobs; the following conclusions are drawn:

- If 20% of projected jobs are new to Seymour (32 new jobs), the community can expect a $\$ 1,343,000$ total positive benefit from 2019 to 2029.
- If 30\% of projected jobs are new to Seymour (48 new jobs), a \$2,015,000 total positive benefit from 2019 to 2029 can be expected.
Seymour is expected to need approximately seven (7) acres of land to accommodate new job growth in the next ten (10) years, with the majority (87\%) needed for industrial expansion. Job and population growth both positively impact retail spending. New retail spending in Seymour as a result of growth from 2019-2029 is estimated to be \$945,000 (\$94,500 annually).

TABLE 31. SEYMOUR LAND USE PROJECTIONS BY INDUSTRY CATEGORY (2019-2029)

Land Use	Projected Jobs through 2029	Potential Net SF Needed (through 2029)	Acres Needed* (3:1 land to building ratio)	\% of Total
Office	3	4,506	0.10 acres	1.5\%
Commercial	17	37,026	0.85 acres	11.9\%
Industrial	111	268,620	6.17 acres	86.6\%
TOTALS	131	310,153	7.12 acres	100\%

[^6]Transportation access to support economic development are abundantly present in Seymour. As with the other communities along the corridor, U.S. 60 is the major and critical route for short and long-haul vehicles in Seymour. Additionally, the proposed Highway K/Highway C interchange would offer available land with direct access to Highway C, Highway K, and Highway BB, the three (3) key north-south connections that increase marketability at this location. Although the proposed W Clinton Avenue Interchange in Seymour lacks access to north-south roads, nearby McDonalds and Subway restaurants may encourage development of additional commercial tracts in the vicinity. The interchange will also offer direct access to outer roads that connect to the proposed interchange. Both interchange locations are located within existing city limits and offer available land and accessible utilities for economic expansion, making these locations prime opportunities for future development.

Added Investment Value

The population expansion, economic demand, and opportunity for market expansion attributed to the U.S. 60 Corridor Master Plan improvements are anticipated to increase the value of properties and result in these four (4) communities along the corridor becoming prime locations for business expansion and new job growth. Retail sales are expected to yield potentially over $\$ 9$ million in new spending over ten (10) years.
These opportunities for economic development should be included in the investment analysis of the improvements to fully appreciate how investments made by agencies, municipalities, and private parties will result in a net positive benefit for the U.S. 60 Corridor and residing communities.

TABLE 32. INVESTMENT SUMMARY

Municipality	Acres Needed within Growth Industries (Acres)	Additional Jobs	New Jobs	Additional Annual Retail Sales
Rogersville	17.20	339	$68-102$	$\$ 719,000$
Fordland	4.60	104	$21-31$	$\$ 75,300$
Diggins	1.50	$28-40$	$6-12$	$\$ 36,500$
Seymour	7.10	160	$32-48$	$127-193$
TOTALS	30.4	640		$\$ 925,500$

In addition to the BCA for safety and operations of the proposed improvements, an economic Benefit-Cost Analysis (BCA) was also performed, allowing for a holistic look at infrastructure investments along the corridor. The economic benefits are directly tied to the results of implementing the eight (8) interchanges along U.S. 60 in Webster County.

Municipality	Employment Benefits	New Retail/Sales Revenue Benefits	Total Economic Potential	Combined "Soft" BCA Value
Rogersville	$\$ 8,514,000$	$\$ 14,380,000$	$\$ 22,894,000$	1.90
Fordland	$\$ 3,726,000$	$\$ 1,506,000$	$\$ 5,232,000$	1.13
Diggins	$*$	$*$	$*$	$*$
Seymour	$\$ 4,030,000$	$\$ 1,890,000$	$\$ 5,920,000$	2.58
TOTALS	$\$ 16,270,000$	$\$ 17,776,000$	$\$ 34,046,000$	1.79

The benefits included in the analysis above include increased safety, travel time savings, emissions reductions, maintenance cost reduction, and economic development potential. The result is an increased overall "soft" BCA value of the U.S. 60 Corridor of 1.79. The addition of economic benefits resulted in the improved BCA value for the Rogersville, Fordland, and Seymour municipalities, with values of 1.90, 1.13, and 2.58, respectively.
It should be noted that this modified economic BCA is highly dependent on market trends, and the values resulting from this analysis are for the market trends in Fall 2019. Shifts in the market may result in greater or lesser returns on investment.

U.S. 60 Corridor Resiliency Planning

VI - U.S. 60 Corridor Resiliency Planning

As part of the U.S. 60 Corridor Study, the Southwest Missouri Council of Governments partnered with Webster County to assist in funding the study, utilizing a grant through the Missouri Association of Councils of Governments (MACOG). The grant assisted in funding, provided the study placed focus on resiliency. Specifically, increasing resiliency of the regional transportation network in the event of road closures and traffic rerouting due to natural disasters and emergency events.

To meet the required funding deadline set by MACOG, a standalone chapter of the U.S. 60 Corridor Master Report, titled Corridor Resiliency Planning was developed and submitted on September 30, 2019. The U.S. 60 Corridor Resiliency Planning summary serves as Appendix F of the U.S. 60 Corridor Master Plan report. A brief summary of the document can be found below. Additionally, a Regional Incident Detour Analysis was developed to determine the impacts of traffic being detoured onto US 60. This analysis can be found in Appendix F.

Summary

With over 60,000 vehicles traveling east and west through Webster County daily, it is imperative to consider the traffic operations and safety impacts associated with a major closure or delay on one of these roadways. Major closures and delays have historically occurred during times of flooding, road construction, or major vehicle collisions, resulting in significant traffic diversion to alternate roadways. Traffic diversion on adjacent infrastructure often leads to overloading roadway capacities, resulting in significant traffic delays, heightened safety risks, and significant economic losses.

Due to the necessity of the railroad in this area to both the national and state economies, an emergency incident due to train derailment, vehicle-train collision, hazardous material spill, or flooding event occurring on the BNSF Thayer-North line would be detrimental to the movement of freight across the country. It is critical to the regional and nation rail network to maintain a resilient corridor along the Thayer-North line in Webster County, supporting the safe and efficient delivery of high-dollar freight across the country.
To maintain resiliency along the U.S. Corridor in the event of a major closure or delay, the following improvements have been suggested:

IMPROVEMENTS AT HIGHWAY A

The construction of an interchange, outer road system, and shoulder pull-offs for horse and buggy use at Highway A in Diggins would reduce traffic congestion and potential safety conflicts for both the agricultural communities and motor vehicle traffic.

U.S. 60 PROFILE ADJUSTMENT

Raising the roadway profile and improving the drainage system of U.S. 60 in the area just east of Farm Road 213 (Greene County) would significantly reduce the potential for flooding and to help maintain efficient traffic flow in periods of record flooding. While this improvement would be made to the Greene County section of U.S. 60, the corridor throughout Webster County would significantly benefit.

INTERCHANGE AT HIGHWAY Z

The construction of an interchange, railroad overpass, and outer road system at Highway Z in Fordland would allow for the removal of six (6) at-grade roadway intersections and at-grade highway/rail crossings. This improvement would eliminate the safety risk associated with these at-grade intersections and rail crossings and create a single efficient access point to U.S. 60. The construction of an overpass would also eliminate the safety concern attributed to intersection flooding at Highway Z.

SEYMOUR RAILROAD OVERPASS

As the City of Seymour is currently divided by the BNSF Railway, the construction of a railroad overpass at Summit Avenue and Highway K would maintain local connectivity and provide necessary access in the event of all at-grade crossings being simultaneously closed by stalled rail traffic. This improvement would also present the opportunity for residential and commercial growth south of the railroad.

Implementation Strategies

VII - Implementation Strategies

The U.S. 60 Corridor Master Plan sets the long-term vision for the future of the highway/rail corridor and the southern Webster County communities of Rogersville, Fordland, Diggins, and Seymour. While the master plan identifies key improvements needed to improve safety, efficiency, and resiliency along the corridor, it is not practical to consider all improvements to be implemented as one (1) project due to the magnitude of their total cost.
The timing of available funds will limit the implementation of improvements while always maintaining public safety and connectivity throughout the corridor. The prioritization of improvements is determined based on several key factors, including safety, BCA, infrastructure and natural disaster resiliency, and connectivity.

Corridor Improvements Prioritization

A generalized plan for the prioritization and implementation is defined below. Improvements are first prioritized by safety impacts, BCA, regional resiliency and connectivity, and locally prioritized improvements. In many instances certain roadway improvements or extensions are required to effectively implement other improvements. As such, projects should be considered on a holistic approach as funding mechanisms are leveraged in the design phases.

Prioritized Improvements below identify general areas of improvements for each study section. Specific Improvements may also require other improvements to be implemented for full safety and efficiency benefits to be effective. See Section VI Corridor Resiliency Planning for improvement prioritization based solely on strategic, resilient improvements.

TABLE 33. ROGERSVILLE IMPLEMENTATION SUMMARY

Section I - Rogersville		
Priority	Key Improvement	Benefits
1	White Oak Interchange	Interchange will provide grade-separated access to U.S. 60.
2	US 60 Westbound Realignment	Realignment of U.S. 60 WB lanes will reduce vehicle crashes due to hydroplaning \& will allow for implementation of an outer road system from Porter Crossing to Center St.

TABLE 34. FORDLAND IMPLEMENTATION SUMMARY

Section II - Fordland		
Priority	Key Improvement	Benefits
$\mathbf{7}$	Highway Z Interchange	Interchange \& outer road system will eliminate need for 7 at-grade intersections \& rail crossings \& provide grade- separated access to US 60 \& over the BNSF Railway.
2	Highway FF (Burks St.) Interchange	Interchange will provide grade-separated access to U.S. 60 at the center of town.
3	Highway U Interchange \& Rail Overpass	Interchange \& Rail Overpass will provide grade-separated access to US 6O \& over the BNSF Railway, eliminate 2 at- grade rail crossings, and increase connectivity north of U.S. 60.

TABLE 35. DIGGINS IMPLEMENTATION SUMMARY

Section III - Diggins	Benefits	
Priority	Key Improvement	Interchange will eliminate a heavily used at-grade intersection \& provide a much safer grade-separated access to U.S. 60 \& over the BNSF Railway. The Hwy A interchange will alleviate heavy traffic traveling to/from I-44 \& provide improved traffic capacity during Incident Relief Events.
$\mathbf{7}$	Highway A Interchange	Overpass will provide vehicular \& agricultural buggy access across U.S. 6O \& the BNSF Railway.
Short Road Overpass		

TABLE 36. SEYMOUR IMPLEMENTATION SUMMARY

Section IV - Seymour		
Priority	Key Improvement	Benefits
1	W Clinton Ave. Interchange	Interchange will eliminate at-grade signalized intersection \& provide grade-separated access to US 60 \& over the BNSF Railway. This interchange will tie the Seymour \& Diggins communities together \& expand economic development opportunities.
2	Highway K/Highway C Interchange	Interchange will address the highest safety priority in the corridor by eliminating the signalized intersection and providing grade-separated access to U.S. 60. Additional intersection improvements will occur at Highway K/E Clinton.
3	Pewee Crossing Interchange \& Highway Realignment	Interchange \& Rail Overpass will result in elimination of 5 at-grade rail crossings \& 3 at-grade intersections. A highway realignment \& outer road system will maintain connectivity.
4	Summit Ave. Railroad Overpass	The Summit Ave. Overpass will provide safe access over the BNSF Railway during times of rail traffic \& provide opportunities for economic \& residential growth.

Temporary Detour Plan

During the construction of improvements, traffic pattern disruptions are expected. Efforts during the design phases should be made to minimize the impacts to traffic and to maintain local access. The greatest impacts are expected to occur during the construction of interchanges on U.S. 60. In such cases, traffic detours will be planned, and existing at-grade intersections and rail crossings will not be closed until traffic patterns can safely be routed onto the constructed improvements. Utility Impacts are expected at several locations along the corridor. In several locations, overhead electric utilities cross the highway and railroad. Summit Natural Gas owns and maintains an $8^{\prime \prime}$ gas main within the U.S. Highway 60 Right-of-Way. Utility impacts should be considered during the engineering phase to plan for timely relocations that do not interfere with roadway construction.
Regional traffic shifts may occur at several project locations, including Highway Z in Fordland, Highway A in Diggins and Highway K in Seymour. As such, traffic detours for these routes should be able to accommodate additional traffic loads due to regional disaster relief routes. Specifically, Highway A is the main incident relief route from 1-44, and adequate access and connectivity to U.S. 60 should be maintained in the event of a roadway closure.

Funding Mechanisms

At the time of the U.S. 60 Corridor Study, there is no funding mechanism or agency identified to fund the proposed improvements. The study was designed as a plan to move the U.S. 60 Corridor forward and increase the prioritization for improvements on various agency lists, including MoDOT and SMCOG. The study resulted in a list of key improvements to the corridor that sets the path forward for advancing the safety, efficiency, and resiliency of the highway/rail corridor, and justifies the positive return on investment for implementing the improvements.
The study process was designed to align with and meet the requirements of applications for future funding through various local, state, and federal agencies. The U.S. 60 Corridor through Webster County has the opportunity to be a highly competitive candidate for funding, as the study and improvements encompass many key elements and priorities agencies seek when providing funding opportunities. The corridor is eligible for various funding opportunities, including highway safety, environmental impacts (emissions reduction and minimized flooding impacts), emergency response initiatives, infrastructure resiliency, rail safety, economic development, and many more. The state of Missouri grade-crossing program could also provide a mechanism for BNSF participation in the cost of highway/rail grade separations and crossing closures.

Annually, many local, state, and federal agencies provide hundreds of Notices of Funding Opportunities (NOFO) and other funding programs for which the U.S. 60 Corridor would be eligible, including MoDOT, USDOT, FRA, FEMA, Missouri DEC, and many more.

Strategic Implementation

Ideally, the entire U.S. 60 Corridor through Webster County would be funded entirely at once, and all improvements could be implemented simultaneously. However, full funding for a single-phase project is likely unrealistic. Thus, strategic implementation along the corridor would be necessary to maintain connectivity, while providing the greatest safety benefits to the most needed locations.

As such, Table 37 summarizes a corridor-wide implementation plan for the proposed improvements (eight (8) interchanges and one (1) overpass) on U.S. 60 that is prioritized based on safety, BCA, resiliency, and regional connectivity. Implementation of these individual improvements would require additional improvements to be made in the form of intersection and at-grade rail closures, outer road systems, or road extensions. This implementation strategy is subject to refinement based upon feedback and further evaluation of all involved stakeholders.

TABLE 37. U.S. 60 STRATEGIC IMPLEMENTATION SUMMARY

Corridor-wide Strategic Implementation Plan		
Priority	Key Improvement	Benefits
1	W Clinton Ave. Interchange (Seymour)	Interchange will eliminate at-grade signalized intersection \& provide grade-separated access to US 60 \& over the BNSF Railway. This interchange will tie the Seymour \& Diggins communities together \& expand economic development opportunities.
2	Highway K/Highway C Interchange (Seymour)	Interchange will eliminate the most historically dangerous signalized intersection in the corridor \& provide grade-separated access to U.S. 60. Additional intersection improvements will occur at Highway K/E Clinton.
3	Highway A Interchange (Diggins)	Interchange will eliminate a dangerous at-grade intersection \& provide grade-separated access to U.S. 60 \& over the BNSF Railway. The Hwy A interchange will alleviate heavy traffic traveling to/from I-44 \& provide improved traffic capacity during Incident Relief Events.
4	Short Road Overpass	Overpass will provide vehicular \& agricultural buggy access across U.S. 60 \& the BNSF Railway.
5	Highway Z Interchange	Interchange \& outer road system will eliminate need for 7 at-grade intersections \& rail crossings \& provide grade-separated access to US 60 \& over the BNSF Railway.
6	Highway FF (Burks St.) Interchange	Interchange will provide grade-separated access to U.S. 60 at the center of town.

Priority	Key Improvement	Benefits
7	White Oak Interchange	Interchange will provide grade-separated access to U.S. 60.
$\mathbf{8}$	Highway U Interchange \& Rail Overpass	Interchange \& Rail Overpass will provide grade-separated access to US 60 \& over the BNSF Railway \& eliminate 1 at-grade rail crossing.
$\mathbf{9}$	Pewee Crossing Interchange \& Highway Realignment	Interchange \& Rail Overpass will result in elimination of 5 at-grade rail crossings \& 3 at-grade intersections. A highway realignment \& outer road system will maintain connectivity.

IN-PROGRESS SAFETY IMPROVEMENTS

In the interim, MoDOT has identified and planned safety improvements along the corridor to address intersections that have a high frequency and severity of crashes. While these improvements do not address the long-term plans of freeway status for the corridor, they do provide needed safety improvements at these locations. Currently, MoDOT has the following projects identified for the U.S. 60 Corridor:

- Rogersville - J-Turn Intersections at Industry Rd. / White Oak Rd. / Center Rd.
- Diggins - Offset Left Turn (Eastbound) and Offset Right Turn (Westbound) at Highway A
- Seymour - Offset Left Turns and Offset Right Turn (Westbound) at Skyline Rd.

INTERIM PROJECT IMPLEMENTATION

While Table 33 highlights the nine largest improvements along the corridor, allocating funding for these projects will take considerable resources, and may need to be realized over a period of several years. However, there are several improvements that can be made in the short-term that require significantly less funding resources, yet drastically increase safety. Significant safety improvements can be made with the implementation of outer road systems, which reduce the number of at-grade intersections on U.S. 60 and at-grade railroad crossings.
Outer roads and other smaller-scale improvements can be built as funding becomes available and each section built strategically, with logical termini. As such, each improvement will result in safety benefits, while also accomplishing a piece of the U.S. 60 Corridor Master Plan. Some projects may not provide as significant safety improvements, though require significantly less funding resources and still align with the Master Plan. Such projects, and their associated benefits have been identified below in Table 38. These projects are subject to change due to funding availability or agency prioritization. Prior to the construction of outer road systems, further engineering studies should be performed to determine traffic impacts the routes and highway intersections that the outer roads intersect.

TABLE 38. INTERIM PROJECT IMPLEMENTATION SUMMARY

Section	Key Improvement	Segment Length (Miles)	Number of Reduced Highway Intersections	Number of At-Grade Railroad Crossings	Probable Cost Level
Rogersville	FR 186 Extension to Peck Hollow	1.5	-	-	1
Fordland	Pave Black Oak Road from Hwy PP to Red Oak Rd	1.0	-	-	1
	Dutch Hill Rd. connection to Red Oak Rd.	0.3	-	1	1
	Extend Brentlinger Dr. to Iron Mountain Road	0.3	1 (North Side)	1	1
	Center St. At-Grade Railroad Crossing Quiet Zone Upgrade	-	-	-	1
	High Friction Surface Treatments	1.2	-	-	1
	Extend Barton Dr. to Crestview Ln.	1.4	3 (North Side)	-	1
	South Outer Rd. (Front St. to Hwy Z)	0.8	-	2	1
	South Outer Rd. (Hwy Z to Honor Camp Ln.)	2.1	3 (South Side)	4	2

Section	Key Improvement	Segment Length (Miles)	Number of Reduced Highway Intersections	Number of At-Grade Railroad Crossings	Probable Cost Level
Diggins	Hwy A Agricultural Shoulder Pullovers	-	-	-	1
	South Outer Rd. (Honor Camp Ln. to Private Dr.)	1.2	1 (North Side)	-	1
	Connect Forest View to Normandy Rd.	0.9	1 (North Side)	-	1
	Extend Ragsdale St. to Box School Lp.	1.5	-	-	1
	Extend Springfield Ave. to Hwy A and Killdeer Rd.	2.6	5 (North Side)	-	3
Seymour	Connect W. Box School Lp. to Finley Falls Rd.	1.1	-	1	2
	E Clinton Ave / Hwy K Intersection Improvements	-	-	-	2
	EB US 60 Curve Realignment \& Outer Road from Oak Lawn to Pewee Crossing	2.2	2	2	1
	Outer Road from Dewberry Rd. to Hwy O (Cedar Gap)	1.6	-	-	2

- $1=<\$ 3$ Million
- $2=\$ 3$ - 5 Million
- 3 = \$5+ Million

APPENDIX A

Public Involvement

ROGERSVILLE
 US HIGHWAY 60 CORRIDOR RALLWAY SAFETY STUDY QUESTIONNAIRE

\square BUSINESS OPERATOR

DATE RECEIVED
RECEIVED BY

BEST WAY TO KEEP YOU INFORMED:
\square Phone: \qquad
Name: \qquad
Business Name: \qquad
Address: \qquad
How long have you lived or worked in the area? \qquad
 <20 \qquad \square 20-40 -40 \square 40-60 \qquad >60

RAILROAD GENERAL QUESTIONS

How often do you cross the tracks? \qquad \square per day \qquad per week How often do you wait at crossings for rail traffic? \qquad \square per day \square per week When stopped for rail traffic, how long is your wait? \qquad min.
Do you think the community needs more railroad crossing safety and education programs? \square yes \square no
What is your preferred route to your business or home?

What type of vehicles / equipment do you drive across the tracks? \qquad
Are there any conditions or physical restrictions at a crossing that have resulted in you using a different crossing?

RAILROAD SPECIFIC QUESTIONS

EXISTING AT-GRADE CROSSINGS

Please rank the existing at-grade crossings on how important they are to you and your business:
(1 = least important, $10=$ most important)

Front Street	
White Oak Road	
Porter Crossing	

EXISTING AT-GRADE CROSSING SAFTEY

Please rank the existing at-grade crossings on how safe you think they are:
(1 = Least safe, $10=$ most safe)

Front Street	
White Oak Road	
Porter Crossing	

ROADWAY GENERAL QUESTIONS

How often do you travel on US Highway 60? \qquad \square per day \square per week
When you travel on US Highway 60 , what is your primary means?
\square Business
\square Recreation
When traveling on US Highway 60, approximately how long do you travel for? $\square 1-5$ Miles $\square 5$-10 Miles $\square 10-20$ Miles $\square 20+$ Miles What is your preferred route to your business or home?

Which intersections along US 60 do you experience the most traffic delays?

ROADWAY SPECIFIC QUESTIONS

EXISTING AT-GRADE INTERSECTIONS

Please rank the existing at-grade intersections on how important they are to you and your business:
($1=$ least important, $10=$ most important)

Industry Road	
White Oak Road	
Center Road	
Power Line Road	
Porter Crossing Road	

What type of vehicles / equipment do you drive on US Highway 60?

Are there any conditions or physical restrictions at an intersection that have resulted in you using a different intersection?

ROGERSVILLE US HIGHWAY 60 CORRIDOR ROADWAY SAFETY STUDY QUESTIONNAIRE

OPINION

What is the RR's contribution to vehicular traffic congestion?	${ }_{\text {impact }}^{\text {high }} \mathrm{O}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {impact }}^{\text {no }}$
What is your opinion of the existing at-grade crossing conditions?	$\underset{\substack{\text { excellent } \\ \text { condition }}}{\text { enter }}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc \bigcirc_{\substack{\text { pery } \\ \text { por }}}^{\text {per }}$
How important is a potential quiet zone through the city limits?	importary	\bigcirc	\bigcirc	\bigcirc	\bigcirc Oimp ${ }_{\text {important }}^{\text {not }}$
How safe do you think the existing at-grade crossings are in town?	very P	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }^{\text {not }}$ sate
How does rail traffic and crossings contribute to emergency response?	${ }_{\text {impact }}^{\text {high }} \mathrm{O}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {impact }}^{\text {nom }}$
When stopped for rail traffic how would you characterize your wait?	${ }_{\text {irritating }}^{\text {very }} \bigcirc$	\bigcirc	\bigcirc	\bigcirc	\bigcirc ¢ ${ }_{\text {bothered }}^{\text {not }}$
Would you be in favor of eliminating at-grade crossings if access to	yes \bigcirc	Ono			

ADDITIONAL COMMENTS

DIGGINS

US HIGHWAY 60 CORRIDOR SAFETY STUDY QUESTIONNAIRE

\square BUSINESS OPERATOR
\square LOCAL RESIDENT

CONTACT INFORMATION

Name: \qquad
Business Name: \qquad
Address:
How long have you lived or worked in the area?

DATE RECEIVED
RECEIVED BY \qquad
BEST WAY TO KEEP YOU INFORMED:
\square Phone: \qquad
\square EMail:
\qquad

Age Range: $\square<20 \quad \square$ 20-40 \square 40-60 $\quad \square>60$

RAILROAD GENERAL QUESTIONS

How often do you cross the tracks? \qquad \square per day \square perweek How often do you wait at crossings for rail traffic? \qquad \square per day \square per week When stopped for rail traffic, how long is your wait? \qquad min.
Do you think the community needs more railroad crossing safety and education programs? \square yes \square no
What is your preferred route to your business or home?

What type of vehicles / equipment do you drive across the tracks? \qquad
Are there any conditions or physical restrictions at a crossing that have resulted in you using a different crossing?

RAILROAD SPECIFIC QUESTIONS

EXISTING AT-GRADE CROSSINGS
Please rank the existing at-grade crossings on how important they are to you and your business:
(1 = least important, 4 = most important)

S Diggins Main Street (Route NN)	
West Box School Loop	
Short Road	
East Box School Loop (Bison)	

EXISTING AT-GRADE CROSSING SAFTEY

Please rank the existing at-grade crossings on how safe you think they are:
(1 = Least safe, 4 = most safe)

S Diggins Main Street (Route NN)	
West Box School Loop	
Short Road	
East Box School Loop (Bison)	

ROADWAY GENERAL QUESTIONS

How often do you travel on US Highway 60 ? _ \square per day \square per week When you travel on US Highway 60, what is your primary means? When traveling on US Highway 60, approximately how long do you travel for? $\square 1$-5 Miles $\square 5$-10 Miles $\square 10-20$ Miles $\square 20+$ Miles What is your preferred route to your business or home? \qquad
Which intersections along US 60 do you experience the most traffic delays?

ROADWAY SPECIFIC QUESTIONS

EXISTING AT-GRADE INTERSECTIONS

Please rank the existing at-grade intersections on how important they are to you and your business:
($1=$ least important, $10=$ most important)

Green Brier Drive		Raspberry Lane	
State Highway A		W Box School Loop	
S Main Street (Hwy NN)		Berry Road	
State Highway O		Killdeer/Short Road	
White Rose Lane		E Box School Loop (Bison)	

What type of vehicles / equipment do you drive on US Highway 60?

Are there any conditions or physical restrictions at an intersection that have resulted in you using a different intersection?

DIGGINS US HIGHWAY 60 CORRIDOR SAFETY STUDY QUESTIONNAIRE

OPINION

What is the RR's contribution to vehicular traffic congestion?	impact ${ }_{\text {high }}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }^{\text {nompact }}$
What is your opinion of the existing at-grade crossing conditions?	${ }_{\substack{\text { excellent } \\ \text { condition }}}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {pory }}^{\text {poory }}$
How important is a potential quiet zone through the city limits?	importary ${ }_{\text {der }}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }^{\text {impt }}$ important
How safe do you think the existing at-grade crossings are in town?	${ }_{\text {very }}^{\text {safe }} \mathrm{O}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {sate }}^{\text {not }}$
How does rail traffic and crossings contribute to emergency response?	${ }_{\text {impact }}$ high O	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {impact }}^{\text {nom }}$
When stopped for rail traffic how would you characterize your wait?	irritating \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc Oith
Would you be in favor of eliminating at-grade crossings if access to	yes \bigcirc	Ono			

ADDITIONAL COMMENTS

\square BUSINESS OPERATOR

\square LOCAL RESIDENT

CONTACT INFORMATION

Name: \qquad
Business Name: \qquad
Address: \qquad
How long have you lived or worked in the area?

RECEIVED BY \qquad

BEST WAY TO KEEP YOU INFORMED:Phone: \qquad
\square EMail:
\qquad

Age Range: $\square<20 \quad \square$ 20-40 \square 40-60 $\square>60$

RAILROAD GENERAL QUESTIONS

How often do you cross the tracks? \qquad \square per day \square per week How often do you wait at crossings for rail traffic? \qquad \square per day \square per week When stopped for rail traffic, how long is your wait? \qquad min.
Do you think the community needs more railroad crossing safety and education programs? \qquad yes \square
What is your preferred route to your business or home?

What type of vehicles / equipment do you drive across the tracks? \qquad
Are there any conditions or physical restrictions at a crossing that have resulted in you using a different crossing?

RAILROAD SPECIFIC QUESTIONS

EXISTING AT-GRADE CROSSINGS

Please rank the existing at-grade crossings on how important they are to you and your business:
(1 = least important, 10 = most important)

Dutch Hill Road	
Red Oak Road (Ballpark Rd)	
Iron Mountain Road	
Center Street	
Carpenter Street	
Highway Z	
Bluebird Lane	
Hummingbird Lane	
Tandy Road	
Honor Camp Lane	

EXISTING AT-GRADE CROSSING SAFTEY

Please rank the existing at-grade crossings on how safe you think they are:
(1 = Least safe, $10=$ most safe)

Dutch Hill Road	
Red Oak Road (Ballpark Rd)	
Iron Mountain Road	
Center Street	
Carpenter Street	
Highway Z	
Bluebird Lane	
Hummingbird Lane	
Tandy Road	
Honor Camp Lane	

ROADWAY GENERAL QUESTIONS

How often do you travel on US Highway 60? \qquad \square per day \square per week When you travel on US Highway 60, what is your primary means?

\square Business

\square Recreation
When traveling on US Highway 60, approximately how long do you travel for? $\square 1$-5 Miles $\square 5$-10 Miles $\square 10-20$ Miles $\square 20+$ Miles What is your preferred route to your business or home?

Which intersections along US 60 do you experience the most traffic delays?

What type of vehicles / equipment do you drive on US Highway 60?

Are there any conditions or physical restrictions at an intersection that have resulted in you using a different intersection?

ROADWAY SPECIFIC QUESTIONS

EXISTING AT-GRADE INTERSECTIONS

Please rank the existing at-grade intersections on how important they are to you and your business:
(1 = least important, $10=$ most important)

State Highway U		Windswept Drive	
Iron Mountain Rd.		Bluebird Lane	
Burks St. (Hwy FF)		Hummingbird Lane	
Main St. (Hwy PP)		Tandy Road	
State Highway Z		Honor Camp Lane	

EXISTING AT-GRADE INTERSECTION SAFTEY

Please rank the existing at-grade intersections on how safe you think they are:
(1 = Least safe, $10=$ most safe)

State Highway U		Windswept Drive	
Iron Mountain Rd.		Bluebird Lane	
Burks St. (Hwy FF)		Hummingbird Lane	
Main St. (Hwy PP)		Tandy Road	
State Highway Z		Honor Camp Lane	

FORDLAND US HIGHWAY 60 CORRIDOR SAFETY STUDY QUESTIONNAIRE

OPINION

What is the RR's contribution to vehicular traffic congestion?	${ }_{\text {impact }}^{\text {high }} \mathrm{O}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }^{\text {mon }}$ imact
What is your opinion of the existing at-grade crossing conditions?	$\underset{\substack{\text { excellent } \\ \text { condition }}}{ }$	\bigcirc	\bigcirc	\bigcirc	\bigcirc ¢ ${ }_{\text {pory }}$
How important is a potential quiet zone through the city limits?	importary ${ }_{\text {ver }}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {O }}^{\text {important }}$
How safe do you think the existing at-grade crossings are in town?	${ }_{\text {very }}^{\text {sate }} \mathrm{O}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {sate }}^{\text {not }}$
How does rail traffic and crossings contribute to emergency response?	impact ${ }_{\text {high }}$	\bigcirc	\bigcirc	\bigcirc	$\bigcirc{ }_{\text {impact }}$
When stopped for rail traffic how would you characterize your wait?	irritating v	\bigcirc	\bigcirc	\bigcirc	
Would you be in favor of eliminating at-grade crossings if access to	yes \bigcirc	\bigcirc по			

ADDITIONAL COMMENTS

SEYMOUR

 US HIGHWAY 60 CORRIDOR SAFETY STUDY QUESTIONNAIRE\square BUSINESS OPERATOR
\square LOCAL RESIDENT

CONTACT INFORMATION

Name: \qquad
Business Name: \qquad
Address: \qquad
How long have you lived or worked in the area? \qquad

DATE RECEIVED
RECEIVED BY \qquad
BEST WAY TO KEEP YOU INFORMED:
\square Phone: \qquad
\square EMail:
\qquad

Age Range: $\square<20 \quad \square$ 20-40 \square 40-60 $\quad \square>60$

RAILROAD GENERAL QUESTIONS

How often do you cross the tracks? \qquad \square per day \square per week How often do you wait at crossings for rail traffic? \qquad \square per day \square per week When stopped for rail traffic, how long is your wait? \qquad min.
Do you think the community needs more railroad crossing safety and education programs? \qquad \square no
What is your preferred route to your business or home?
What type of vehicles / equipment do you drive across the tracks? \qquad
Are there any conditions or physical restrictions at a crossing that have resulted in you using a different crossing?

RAILROAD SPECIFIC QUESTIONS

EXISTING AT-GRADE CROSSINGS

Please rank the existing at-grade crossings on how
important they are to you and your business:
(1 = least important, 7 = most important)

EXISTING AT-GRADE CROSSING SAFTEY

Please rank the existing at-grade crossings on how safe you think they are:
(1 = Least safe, $7=$ most safe)

Commercial Street	
Main Street	
Charles Street	
Oak Lawn Road	
Peewee Crossing	
Mineral Road	
Dewberry Road	

ROADWAY GENERAL QUESTIONS

How often do you travel on US Highway 60? _ _ \square per day \square per week When you travel on US Highway 60, what is your primary means?
\square Business
\square Recreation
When traveling on US Highway 60, approximately how long do you travel for? \square 1-5 Miles \square 5-10 Miles $\square 10-20$ Miles $\square 20+$ Miles What is your preferred route to your business or home? \qquad
Which intersections along US 60 do you experience the most traffic delays?

What type of vehicles / equipment do you drive on US Highway 60?

Are there any conditions or physical restrictions at an intersection that have resulted in you using a different intersection?

ROADWAY SPECIFIC QUESTIONS

EXISTING AT-GRADE INTERSECTIONS

Please rank the existing at-grade intersections on how important they are to you and your business:
(1 = least important, 9 = most important)

West Clinton Avenue		Oak Lawn Road	
Skyline Road		Peewee Crossing Road	
Lynch Drive		Mineral Road	
State Highway C		Dewberry Road	
State Highway K			

EXISTING AT-GRADE INTERSECTION SAFTEY

Please rank the existing at-grade intersections on how safe you think they are:
(1 = Least safe, $9=$ most safe)

West Clinton Avenue		Oak Lawn Road	
Skyline Road		Peewee Crossing Road	
Lynch Drive		Mineral Road	
State Highway C		Dewberry Road	
State Highway K			

SEYMOUR
US HIGHWAY 60 CORRIDOR SAFETY STUDY QUESTIONNAIRE

OPINION
What is the RR's contribution to vehicular traffic congestion?
What is your opinion of the existing at-grade crossing conditions?
How important is a potential quiet zone through the city limits?

How does rail traffic and crossings contribute to emergency response?
When stopped for rail traffic how would you characterize your wait?
Would you be in favor of eliminating at-grade crossings if access to
yesno

ADDITIONAL COMMENTS

Public Opinion Survey \& Voting Results

Section 1 - Rogersville

The Rogersville Public Opinion Survey had a total of 4 responses, with 2 received by mail, 1 in-person, and 1 online. The results are presented below, however, they were not heavily weighted in the decision-making process due to the limited sample size.

Opinion Question 1

Participants were asked how often they cross the railroad tracks on a weekly basis.
50% of participants stated they utilize the at-grade crossings approximately eight (8) to 14 times per week. This indicates that onaverage, people cross the railroad tracks one (1) to two (2) times per day.

Opinion Question 2

Participants were asked how often they travel on U.S. 60 each week.
75\% of participants stated they travel on U.S. 60 approximately eight
(8) to 14 times per week. This indicates that on-average, people utilize U.S. 60 one (1) to two (2) times per day to travel to/from their destinations.

Opinion Question 3

Participants were asked if they would be in favor of implementing Railroad Safety \& Education Programs (Yes / No)

The question netted a 75% (3 of 4) response in favor of implementing a program. This indicates that the community is supports the implementation of additional Railroad Safety \& Education Programs.

Opinion Question 4

Participants were asked to rank the importance of each existing at-grade rail crossings to better understand which crossings have a significant impact on businesses \& everyday use. (1=Least Important, 10=Most Important) Participants were encouraged to think beyond their personal needs and rank according to the importance to the community.
Of the three (3) crossings included in the study limits, Porter Crossing Road showed to be the most important to the rural Rogersville community.

Opinion Question 5

Participants were asked to rate a series of seven (7) statements on the impacts the railroad has on the community. Questions gauged the community's perception of the railroad and the impacts it has on the daily quality of life.

The responses received from the Rogersville community show the community accepts the impacts the rail line has to the community. Many of Rogersville's crossings, except for Porter Crossing, have been upgraded within the last 10

Q1: RR's Contribution to Vehicular Traffic Congestion	
Q2: Curent At-Grade Crossing Condilion	
Q3: Importance of Quiet Zone	
Q4: Current At-Grade Crossing Safety	3.75 newtse. Sver mete)
Q5: Rail Traffic Impact on Emergency Response	2.75 n=wimpeat smontmpeet
Q6: Characterize Your Wait When Stopped For Rail Traffic	
Q7: In Favor of Eliminating RR Crossings	75\% Yes \| 25% No

The last question in this series is arguably the most important reinforcement of the public's potential to support a corridor consolidation project. The Rogersville community supports the elimination of railroad crossings, provided adequate access was maintained, with 75% of participants (3 of 4) in support of eliminating crossings.

Meeting \#2 - Public Voting Results

Four (4) alternatives were presented to the public (see Corridor Master Plan). Alternatives included concept ideas received by the public, those considering proposed short-term improvements by MoDOT, and others developed by the project team. Attendees were provided four (4) dots to rank each alternative presented. Of the 16 people in attendance, all 16 voted, with 14 correctly ranking all alternatives. The results and input received show that Alternate 1 garners the greatest public support, with an average ranking of 3.29 out of 4 . This option provides the greatest safety benefit and aligns with the long-term vision of a limited-access freeway, with a new interchange at White Oak Rd./Peck Hollow Rd., new outer road to Porter Crossing Road, and new U.S. Westbound Iane alignment.

Section 2 - Fordland

After a one (1) month period following the first meeting, 25 surveys responses were collected, with 15 Mail-In, 8 In-person, and 2 via email. Valuable information regarding the common commuting routes, flooding issues, and safety concerns, were received and documented at the meeting and from the public opinion survey.

Opinion Question 1

Participants were asked how often they cross the railroad tracks on a weekly basis.

54\% of participants stated they utilize the at-grade crossings more than 15 times per week. This indicates that on-average, people cross the railroad tracks more than twice per day.

Opinion Question 2

Participants were asked how often they travel on U.S. 60 each week.
80\% of participants stated they travel on U.S. 60 approximately eight (8) to 14 times per week. This indicates that on-average, people utilize U.S. 60 one (1) to two (2) times per day to travel to/from their destinations.

Opinion Question 3

Participants were asked if they would be in favor of implementing Railroad Safety \& Education Programs (Yes / No)
The question netted a 58% response in favor of implementing a program. This indicates that the community is relatively split as to whether they would like to see the implementation of additional Railroad Safety \& Education Programs.

Opinion Question 4

Participants were asked to rank the importance of each existing at-grade rail crossings to better understand which crossings have a significant impact on businesses \& everyday use. (1=Least Important, 10=Most Important) Participants were encouraged to think beyond their personal needs and rank according to the importance to the community.

Of the 10 crossings included in the study limits, Highway Z is perceived to be the most important to the rural Fordland community.

Opinion Question 5

Participants were asked to rate a series of seven (7) statements on the impacts the railroad has on the community. Questions gauged the community's perception of the railroad and the impacts it has on the daily quality of life.

The responses received from the Fordland community show the community perceives the impacts of the railroad on vehicular traffic congestion to be minimal. This question did show the community is interested in implementing a
 Quiet Zone.

The last question in this series is arguably the most important reinforcement of the public's potential to support a corridor consolidation project. The Fordland community is split on the elimination of railroad crossings, with only 45% of participants in support of eliminating crossings.

Meeting \#2 - Public Voting Results

Five (5) alternatives were presented to the public (see Corridor Master Plan). Alternatives included concepts developed by the public and local stakeholders at previous meetings and those developed by the project team. Of the 17 attendees, 16 participated in the voting process, with 15 correctly placing all dots to rank their preferred alternatives. Alternate 2A was determined to be the most community-backed option, with a ranking of 3.20 out of 5 . This option aligns with the vision of a limited-access freeway, and centers access around 3 interchanges at Highway U, Highway FF (Burks St.), and Highway Z.

Section 3 - Diggins

Attendees provided valuable insight into the safety risks they encounter on a daily basis, with the Highway A intersection being the most notable concern. After the one (1) month period following the meeting, 30 total surveys were collected, with 11 returned In-person, 4 by mail, and 2 online.

Opinion Question 1

Participants were asked how often they cross the railroad tracks on a weekly basis.
41% of participants stated they utilize the at-grade crossings at least one (1) to seven (7) times per week. This indicates that on-average, people cross the railroad tracks approximately once per day.

Opinion Question 2

Participants were asked how often they travel on U.S. 60 each week. 56\% of participants stated they travel on U.S. 60 approximately one (1) to seven (7) times per week. This indicates that on-average, people utilize U.S. 60 one (1) to two (2) times per day to travel to/from their destinations.

Opinion Question 3

Participants were asked if they would be in favor of implementing Railroad Safety \& Education Programs (Yes / No)

The question netted a 68\% response in favor of implementing a program. This indicates that the community is relatively split as to whether they would like to see the implementation of additional Railroad Safety \& Education Programs.

Opinion Question 4

Participants were asked to rank the importance of each existing at-grade rail crossings to better understand which crossings have a significant impact on businesses \& everyday use. (1=Least Important, 4=Most Important) Participants were encouraged to think beyond their personal needs and rank according to the importance to the community.

Of the 10 crossings included in the study limits, Highway NN (S Diggins Main St.) is perceived to be the most important to the rural Diggins community.

Opinion Question 5

Participants were asked to rate a series of seven (7) statements on the impacts the railroad has on the community. Questions gauged the community's perception of the railroad and the impacts it has on the daily quality of life.

The responses received from the Diggins community show the community perceives the impacts of the railroad on vehicular traffic congestion to be moderate. Additionally, this question shows the community is in agreeance that there are safety concerns at many of the at-grade crossings as well as the rail having high impacts on emergency response.

The last question in this series is arguably the most important reinforcement of the public's potential to support a corridor consolidation project. The Diggins community supports the elimination of railroad crossings, provided adequate access was maintained, with 77% of participants in support of eliminating crossings.

Meeting \#2 - Public Voting Results

Four (4) alternatives were presented to the public (see Corridor Master Plan). Alternatives included concepts developed by the public and local stakeholders at previous meetings and those developed by the project team. Of the 14 attendees at the meeting and 37 members of the agricultural community participating, 50 participated in the voting process, with 46 correctly placing all dots to rank their preferred alternatives. Alternate 2 was determined to be the most community-backed option, with a ranking of 2.87 out of 4 . This option aligns with the vision of a limited-access freeway, and centers access around an interchange at Highway A, with outer roads adjacent to U.S. 60 and an overpass near Short Road or Berry Road.

Publicly Favored Alternate Diggins Section

Section 4 - Seymour

Seymour Public Listening Session \#1 (06/25/19)

A total of eight (8) surveys were collected from the initial meeting in Seymour. Attendees at the second meeting were provided an option to fill out the survey in person and return the same day. An additional 15 surveys were collected, for a total of 23 participants, with 22 responding in-person and 1 by mail.

Opinion Question 1

Participants were asked how often they cross the railroad tracks on a weekly basis.

52\% of participants stated they utilize the at-grade crossings more than 15 times per week. This indicates that on-average, people cross the railroad tracks approximately more than twice per day.

Opinion Question 2

Participants were asked how often they travel on U.S. 60 each week.
64\% of participants stated they travel on U.S. 60 approximately eight (8) to 14 times per week. This indicates that on-average, people utilize U.S. 60 one (1) to two (2) times per day to travel to/from their destinations.

Opinion Question 3

Opinion Question 4

Participants were asked to rank the importance of each existing at-grade rail crossings to better understand which crossings have a significant impact on businesses \& everyday use. (1=Least Important, $7=$ Most Important) Participants were encouraged to think beyond their personal needs and rank according to the importance to the community.

Of the seven (7) crossings included in the study limits, the Main Street (Highway K) crossing is perceived to be the most important to the City of Seymour.

Opinion Question 5

Participants were asked to rate a series of seven (7) statements on the impacts the railroad has on the community. Questions gauged the community's perception of the railroad and the impacts it has on the daily quality of life.

The responses received from the Seymour community show the community perceives the impacts of the railroad on vehicular traffic congestion to be moderate. Additionally, this question shows the community is in agreeance that

Q1: RR's Contribution to Vehicular rrafic Congestion	
Q2: Curent At-Grade Crossing Condilion	
Q3: Importance of Quiet Zone	
Q4: Current At-Grade Crossing Safety	2.71 (10wemet, sver mea)
Q5: Rail Traffic Impact on Emergency Response	
Q6: Characterize Your Wait When Stopped For Rail Traffic	
Q7: In Favor of Eliminating RR Crossings	86\% Yes \| 14% No

The last question in this series is arguably the most important reinforcement of the public's potential to support a corridor consolidation project. The Seymour community supports the elimination of railroad crossings, provided adequate access was maintained, with 86% of participants in support of eliminating crossings.

Meeting \#2 - Public Voting Results

The second Diggins Public Listening Session was held on August 8 ${ }^{\text {th }}, 2019$ at the Seymour Senior Center. There were approximately 42 attendees, including local officials, business owners, and private citizens.

Six (6) alternatives were presented to the public (see Corridor Master Plan). Alternatives included concepts developed by the public and local stakeholders at previous meetings and those developed by the project team. Of the 42 attendees, 31 participated in the voting process, with 28 correctly placing all dots to rank their preferred alternatives. Alternate 2B was determined to be the most community-backed option, with a ranking of 2.33 out of 6 . This option aligns with the vision of a limited-access freeway, removal of at-
 grade signalized intersections, and implementation of a railroad overpass to maintain connectivity.

County plans for highway's future

By Karen Craigo

karenc@marshfieldmail.com

The southern part of Webster County is the fastest-growing area, according to Paul Ipock, president of the Webster County Commission. That is why the county leaders must plan for growth in the U.S. Highway 60 corridor.

In their Jan. 29 meeting, commissioners voted to enter into contract negotiations with Crawford, Murphy and Tilley (CMT) to handle transportation planning.
"The south side of the county is growing. The south rail has many, many trains through it - at one time 60 trains a day were going through Seymour," Ipock said. He said that the railroad is always on the county to close crossings, but before that is done, the commissioners need to see a plan.

County Clerk Stan Whitehurst explained that railroad crossings need to line up with highway infrastructure. "We can't independently close rail crossings without knowing where future interchanges are going to be," he said, adding that commissioners need to take care not to leave any roads to nowhere.

Ipock said that the commissioners are teaming up with the Missouri Department of Transportation and the Burlington Northern Santa Fe Railway to seek a possible plan.
"What we're most concerned with is how we're going to move people along," Ipock explained. "Twenty years ago, MoDOT said 60 would have freeway status from Willow Springs to Springfield." With planning, he added, the county can be ready for whatever materializes with the throughway.

County forming plans for future of U.S. 60

By Karen Craigo

carencemarshifelamailicom
Growth appears to be inevitable in Webster County, and now is the time to plan for it, according to the Board of Commissioners.

That is why the county has contracted with Crawford, Murphy \& Tilly (CMT), an infrastructure consultancy firm that readers may recognize from its work with the City of Marshfield on planning for the new Interstate 44 interchange and Route 66 roadside park.

For Webster County, CMT will be spearheading a different project: a long-range study of the 22 -mile-long U.S. 60 corridor within the county's borders.

The county is planning four separate sets of three listening sessions in communities across the expanse of the highway. The first meeting will be held in Rogersville from 6:30 to 8 p.m. on Tuesday, June 11, at the First Baptist Church gym, 101 W. Mill St., Rogersville, and this session is intended for Rogersville-area input only. Another meeting will be held in Fordland from 6 to 7:30 p.m. on June 13 in the Fordland City Hall, 296 Burks St., Fordland, to hear Fordlandarea concerns. Other sessions will be held in Diggins on June 18 and Seymour on June 25 at times and places to be announced. Each of these four municipalities will have a set of three input sessions over the course of the study.

At these meetings, the public will be invited to weigh in with thoughts about the future of U.S. 60 with consideration of the county's growth projections.

The county's effort is happening with the cooperation of the Missouri Department of Transportation, Burlington Northern Railroad and the Southwest Missouri Council of Governments.
"The main thing is that we get out ahead of the change that's coming," explained Stan Whitehurst, the Webster County Clerk. "We recognize that we need some long-range planning."

Commission President Paul Ipock noted that the western end of U.S. 60 in Webster County, the Rogersville area, is growing very rapidly already. The area also has high agricultural usage, and the county has some 40 railroad crossings alongside the route.
"The question is how can we all work together to make it a safer place?" he asked.

Commissioner Randy Owens said that it is also prudent to have a plan in case grant money comes available in the future, because without a plan, "You're dead in the water," he said.

Ipock said that the commissioners want a plan for the future. The 2018 population ofWebster County was 39,109 , he said, but by 2030 , the population is projected to be 53,282 . By contrast, when he and Whitehurst took office in 1999, the population was less than 30,000 .

These days U.S. 60 has more traf-
fic volume and larger trucks on it than when the route was established (around the late 1960s, by Ipock's recollection).

Steve Prange of CMT emphasized that there is no money for improvements at present, but that money is available for highway and railroad safety improvements, especially at the federal level. Having a plan puts the county in line for future funding.
"For years there has been no master plan for the U.S. Highway 60 corridor from Rogersville to the east," he said. "They haven't had a plan to convert that to a freeway or to make intersection improvements or anything. They've just been doing things as money was available or as safety concerns dictated."

Added Prange, "We want to have a plan in place so that we can compete for money to do safety and capacity improvements along 60 . It starts with a plan, so they've hired me to do a plan for them."

Planning for the future of the route will help to make the road safer while encouraging economic development, Commissioner Ipock said. For those unable to attend the listening sessions, a survey will be available at city hall and online at www.webstercountymo. gov after the meeting. Those interested in the topic are encouraged to take the survey that is included on the webpage by June 28.

For more information on recent actions of the Webster County Board of Commissioners, see the "For the Record" public information section inside on pages $15-17 \mathrm{~A}$.

Webster County looks to improve the safety of Highway 60

By Frances Watson | Posted: Tue 10:52 PM, Jun 11, 2019 | Updated: Tue 10:56 PM, Jun 11, 2019
WEBSTER COUNTY, Mo. Webster County is looking at ways to make your drive along Highway 60 safer and is asking for your help in doing so.

The county held the first of several meetings here at First Baptist Church in Rogersville. They're geared toward creating plans for future improvements of this area, including major intersections and rail road crossings.
"I've already asked MoDOT, when are they going to make the 60 an interstate from here to the Mississippi River," said Don Carrigan.

That may likely not happen anytime soon but he says he's eager to see major improvements along the highway in Webster County.
"Planning is a very important step. They're starting out on the right foot," he said.
Presiding commissioner, Paul Ipock said, "The Highway 60 corridor is probably growing faster than anything."
County commissioners have been trying to get a 22 mile stretch of the highway examined for years.
"For sometime now we've asked Burlington Northern to do such a study. We've asked MoDOT to do a study. They didn't really want to.
But then we had a meeting in Springfield in the MoDOT office and said, hey, we're going to do it. Will you buy in? They said yes, we will," explained Ipock.

They hired a private firm to monitor the area. Representatives counted cars that drove through intersections onto the highway and at railroad crossings. They also measured distances between country roads and the highway. All this data was used to calculate what would help improve the safety of the area.
"There will be a federal grant that will be available and if we've got a plan we have a greater chance at getting the grant. The early bird gets the worm. That's what we're hoping for," said lpock.

Officials are asking the public to weigh in by taking a survey and brainstorming ideas about areas that need improvement.
"You've got to change if you want to progress," said Carrigan.
http://www.webstercountycitizen.com/community/meetings/article_c0b846b4-8c96-11e9-a7cf9778dddebcd5.html

BREAKING TOP STORY

U.S. 60 meeting Tuesday

Highway input sought from Seymour residents in meeting at city hall By Dan Wehmer Webster County Citizen citizen@webstercountycitizen.com 5 hrs ago

MEETING TIME

The final public meeting set to gather input about the U.S. 60 corridor in southern Webster County will be held early next week in Seymour.

It arrives next Tuesday in council chambers at Seymour City Hall.

The meeting starts at 6 p.m. It has been scheduled to last $1-1 / 2$ hours.

The public is invited and encouraged to attend.

Previous meetings have been held in Diggins, Fordland and Rogersville.

The meetings are being organized by the Webster County Commission.

Elected representatives from each of the three communities will be present at the respective meetings.

County Clerk Stan Whitehurst said the purpose of the meetings is to gather ideas about possible improvements along U.S. 60, which travels for 30 miles on the south side of Webster County, beginning in the west at Rogersville and ending in the east at Cedar Gap.

Southern District Commissioner Randy Owens said the county commission has been encouraged in the project by assistance from the Burlington Northern Santa Fe (BNSF) railroad. He said BNSF officials have shown a great interest in finding solutions to present and future traffic issues on fourlane U.S. 60.
"This is very encouraging for us as BNSF hasn't been involved in these types of discussions in the past," Owens said. "When we had a stakeholder meeting earlier this month in Marshfield, we had a lot of representatives there from the cities along U.S. 60 and the (Seymour) Special Road District, which also was very encouraging."

Among the issues to be discussed will be possible overpasses in Seymour, making U.S. 60 a true "limited-access" highway, safety of Amish horse-drawn buggies on the four-lane highway and many other topics.s

When meetings are held in Diggins, Fordland and Seymour, respectively, Whitehurst said it is important that local residents attend and share their ideas, thoughts and visions.
"These meetings don't work nearly as well without that local participation," he said. "That's why we encourage the public to come out and attend, to share their viewpoints, to be a big part of the process."

Doors at city hall will open at 5:30 p.m. Tuesday.
http://www.webstercountycitizen.com/news/article_89336e3e-9e5d-11e9-834d-f7f2955b58eb.html

U.S. 60 future debated

County-led study comes to Seymour with 58 in attendance
By Dan Wehmer Webster County Citizen citizen@webstercountycitizen.com Jul 3, 2019 Updated Jul 9, 2019

Consultant Steve Prange, left, of Crawford, Murphy \& Tilly goes over U.S. 60 traffic issues with Cpl. Chase Davis of the Seymour Police Department, right, at last week's meeting.
CITIZEN PHOTO/Dan Wehmer

There are 22 miles of four-lane U.S. 60 in southern Webster County.

Along that corridor are 49 intersections - 25 of them partial access, 24 that are full access.

The Webster County Commission wants to create a plan for the future of the federal highway that currently carries 23,000 vehicles a day through Seymour.

Commissioners also want to develop a plan for the corridor's railroads as 50 to 60 Burlington Northern Santa Fe trains travel through tracks adjacent to the highway each day.

Discussion of that plan came to Seymour City Hall last Tuesday, June 25, as Steve Prange, regional office manager for Crawford, Murphy \& Tilly of Springfield, a consulting and engineering company hired by the county to complete a study of the corridor, led a public meeting that drew 58 guests and many questions over 1-1/2 hours.

Present were all three commissioners - Presiding Commissioner Paul lpock, Randy Owens from the Southern District and Dale Fraker from the Northern District - two members of the Seymour Special Road District, Assistant District Engineer Andy Mueller from the Missouri Department of Transportation (MoDOT), State Rep. Hannah Kelly and officials from the Southwest Missouri Council of Gov ernments.

After an introduction from lpock, Prange began his presentation, laying out the statistics for Section 4 of the corridor, which goes from Seymour to the Wright County line at Cedar Gap. Section 1 is Rogersville, Section 2 is Fordland, while Section 3 is Diggins.

Prange noted along the U.S. 60 corridor, there are 36 different rail crossings -24 of them public and 12 of them private.

At those crossings over the past 25 years, there have been 44 different "incidents," resulting in 15 fatalities, 14 injuries and 15 non-injury incidents.

He also shared highway statistics in Section 4, noting that since 2012, there have been 192 automobile accidents at U.S. 60 crossings, resulting in 68 injuries and four fatalities.
"Five people have been killed at the railroad crossings in the Seymour area since 1990," Prange added.

Statistics compiled this spring showed the traffic counts at all highway and rail crossings in Section 4.

The busiest crossing?

It's at Highway K going south off U.S. 60 , which has an average of 3,570 crossings a day.

Next is Highway C going north off U.S. 60 at 2,570.

The busiest rail crossing in Seymour?

It may surprise most.

It's not the crossing on Main Street (Highway K). That crossing averages 830 cars a day.

But the crossing on Commercial Street has more than three times as many daily crossings at 2,631 .

The rail crossing on Charles Street has a daily average of 1,006 per day.

Prange's statistics showed that the crossing on U.S. 60 at Skyline Road averages 1,510 vehicles a day, while the joint highway and rail crossing at Oak Lawn Road at Seymour's east edge averages 1,048 .

The least-used crossing?

It's at Lynch Drive off U.S. 60.

The daily average is 25 vehicles.

However, that number likely will increase significantly this year after Abby and Jacque Grabher opened their new business along the street.

Most questions from the crowd concerned the building of an overpass or overpasses in Seymour.

Prange wouldn't speculate on whether any new overpasses would be built in Seymour in the near future.

However, he said the city's future likely includes an overpass or overpasses.
"The ultimate goal is to have a limited-access highway (on U.S. 60)," Prange said. "That can't happen without an overpass in Seymour.
"For MoDOT, I think the goal is to have a corridor like you now see on the James River Freeway in Springfield.

That's ultimately what southern Webster County on U.S. 60 very well may look like."

Prange was asked how long Seymour will wait for an overpass.
"It could take a very long time," he said. "It may not occur until I'm retired, and I'm not retiring any time soon."

Cpl. Chase Davis of the Seymour Police Department said the city's two stoplights are dangerous.
"If we have to wait 20 more years, how many people are going to die at these two crossings?" he asked.
"I understand your frustration," Prange responded. "The purpose of this study is to get input like yours ... to compile all of the statistics from all sides, then to take that information and create a plan for the county."

Mueller said that MoDOT has plans to build an overpass at the U.S. 60 intersection at Highway 125 west of Rogersville in 2022.
"Are there considerations for our Amish neighbors who use the corridor on U.S. 60 between Highway A at Diggins and Seymour?" Seymour resident Bob Crump asked.
"It's a factor," Prange said. "It most certainly is a factor.

In (Section 4), many of the residents are Amish. It's a safety factor for the Amish and for motorists."

Prange added that once U.S. 60 becomes a full limitedaccess highway, Amish horse-drawn buggies wouldn't be allowed on the shoulders.
"This is something that's been delayed for so long that few people can even remember it," Seymour business owner Jerry Kleier said. "MoDOT bought that property here in Seymour in the early 1970s for the overpass, as well as the right of ways, then absolutely nothing was done.
"Every city between Springfield and way east on U.S. 60 got an overpass. But not Seymour."
"And that's what we are studying," Prange said. "We are looking at a long-term plan and solutions."

Prange concluded the meeting by noting that the purpose of the meeting was to gather information. Handed out to all who attended was a questionnaire soliciting input and opinions from residents who live in Section 4 of the study. Those handouts are available at Seymour City Hall and at the Webster County Citizen office.

A second listening session arrives in early August.

It will be held at the Seymour Senior Citizens' Center on the west side of the city square.

Webster County finalizes plan to improve safety on U.S. 60

By Christine Morton | Posted: Tue 9:52 PM, Oct 22, 2019

ROGERSVILLE, Mo.-- Webster County's study of the 22-mile stretch along U.S. 60 is now complete. The master plan includes areas such as Rogersville, Fordland, Diggins, and Seymour.

Engineer Steve Prange says their goal in the future would be a limited-access freeway similar to James River, which would include interchanges. He says it would enhance safety and travel times.

Prange says the entire project will cost more than $\$ 110$ million, however, at the moment there is no funding to complete the project, but MoDOT plan to look into federal grants.

Superintendent Shawn Randle for the Rogersville School District says this project would help keep students safe on the bus when traveling on U.S. 60.

The next meeting will happen on Tuesday, October 29, at Fordland City Hall.

Get the latest updates from ky3.com delivered to your browser

SUBSCRIBE TO PUSH NOTIFICATIONS

https://marshfieldmail.com/news/u-s-study-recommends-million-in-improvements/article_9b3c79d2-0bc1-11ea-8d3a-dbabcb4c396c.html

U.S. 60 study recommends $\$ 114.3$ million in improvements

By: Karen Craigo, Editor KarenC@MarshfieldMail.com Nov 21, 2019

Steve Prange of CMT Construction shares the results of the U.S. Highway 60 corridor study with residents of Diggins on Nov. 12.
Mail photo by Karen Craigo

A series of three meetings in each of four towns along the U.S. Highway 60 corridor wrapped up Tuesday in Seymour.

Participating communities represented the whole stretch of U.S. 60 , from the western to the eastern boundaries of Webster County. They included Rogersville (mile markers 218 to 223), Fordland (223-229), Diggins (229-235) and Seymour (235-242).

The purpose of the meeting was to draft plans for improvements to the U.S. 60 corridor in order to improve safety and commerce.

Since 2012, the stretch has seen 624 accidents, ranging from 17 crashes with 21 fatalities, to 211 injury accidents, to 396 accidents resulting in property damage only. Rail crossing incidents were also tallied, and they included 11 total incidents with two injuries and four fatalities.

Some 253 attendees came to meetings to consider a $\$ 114.3$ million project that would include eight interchanges, two overpasses, 25 miles of outer roads, three railroad crossing upgrades, 20 railroad crossing closures and 21 roadway intersection closures.

The study indicates that the proposed changes will reduce fatal and injury crashes by 38, property damage crashes by 22.6 and total crashes by 60.6 .

The benefit-cost analysis for the entire project comes in at 1.76, which means that for every dollar spent, $\$ 1.76$ of benefit will accrue. Steve Prange, regional office manager for CMT Construction, who conducted the study, reported at the final listening session in Diggins Nov. 12 that this was a phenomenally good figure. He said that he had just been part of a successful project in Springfield with a 1.15 benefit-cost figure, but that a 1.76 figure is practically unheard of.

It should be noted that the project is not in the works; the study merely lays the groundwork to obtain funding sources for future work. Prange cannot imagine a project taking off until, at minimum, five years from now. Having the cooperation of so many people along the corridor will help future efforts, as will a completed study with an excellent benefit-cost figure. The fact that the Burlington Northern Santa Fe Railway company and the Missouri Department of Transportation have been involved also positions the project very nicely for future implementation.

The U.S. 60 corridor population projections predict a 28% increase from 2009 to 2029, according to CMT. Missouri itself is predicted to have only a 5% increase in that period. The number of jobs in the corridor is project to increase from 4,387 today to 4,945 in 2029.
"The Route 60 plan was designed to be the first step," Prange explained.

He added that the route touches so many population centers and communities. "It is a priority - a need for the region," he said.

Prange compared the U.S. Highway 60 planning, now in its initial stages, to the plans for Marshfield's second interchange off of Interstate 44, for which ground was broken this week. He noted that it was the level of planning and cooperation that brought the l-44 plan to fruition, and the same could be true for Highway 60.
(1)

Karen Craigo
Editor

http://www.webstercountycitizen.com/news/article_84ccff62-109b-11ea-a6c6-df038f57f55c.html

BREAKING

- Three new interchanges

U.S. 60 study: Seymour needs $\$ 37.2$ million in highway help

By Dan Wehmer Webster County Citizen citizen@webstercountycitizen.com Nov 27, 2019
1 of 2

According the U.S. 60 Corridor Study, the stoplights at the intersection of Highway C and Highway K should be removed a replaced with an interchange. The same is true at the city's west exit.

CITIZEN PHOTO/Anna Sturdefant

When doing highway-improvement math, there are three key letters.

BCA.

BCA is an acronym for Benefi t Cost Analysis.

A simple explanation for BCA is that for every dollar spent, it is hoped that one is saved. Projects that do just that have a 1-to-1 net BCA.

When Steve Prange of Crawford Murphy Tilly (CMT), a consulting and engineering fi rm from Springfield tasked with completing the official U.S. 60 Corridor Study for the Webster County Commission, recently went to work on a highway project just west of Springfield, the BCA was 1:15-to-1.
"In essence, the estimated return of investment was $\$ 1.15$ for every dollar spent," Prange explained to a crowd of 37 gathered last Tuesday, Nov. 19, at the Seymour Senior Citizens' Center on the west side of the city square.
"That was a net BCA that the Missouri Department of Transportation (MoDOT) was pleased to hear, and MoDOT funded the project."

Prange and his team from CMT compiled the same BCA numbers for the U.S. 60 Corridor in Webster County, which begins in the east at Cedar Gap and ends in the west at Rogersville.

The BCA for the entire 28-mile corridor?
1.76-to-1.

Better yet, the BCA for Seymour's section of the project? 2.75-to-1.
"The good news for Seymour is that you're the No. 1 safety priority for the project," Prange said.

And the bad news?

There is no funding for the work, which is estimated (in 2029 dollars) at $\$ 37,163,939$ for Seymour and at just over \$114 million for the entire corridor.

Three interchanges in Seymour

For more than an hour on Nov. 19, Prange described the proposed project in great detail to nearly 40 people who were present, noting that under CMT's plan, Seymour would get three new interchanges along U.S. 60.

The first would be on the city's west side near the current McDonald's.

The second would be at the intersection of Highway C and Highway K.

The third would be at PeeWee Crossing Road, roughly three miles east of Seymour's city limits.
"You guys (in Seymour) are getting the lion's share of the infrastructure improvements for the entire project," Prange noted. "The biggest improvements or most significant are the three new interchanges."

Currently, he said the annual average number of automobile accidents along U.S. 60 in Webster County is 163.
"With the proposed improvements, that number would be reduced by almost half," Prange said.
"Travel times also would improve ... this will become a limited-access highway if implemented."

In Seymour, the two highest-accident crossings on U.S. 60 can be found at the two aforementioned intersections on the east and west sides of town.
"Both are stoplights," Prange said. "Over the past seven years, there have been 624 accidents or crashes along U.S. 60 in Webster County. Of those, 192 of them have occurred in Seymour. That's a very-high proportion."

If the new interchanges are constructed, Prange said a system of outer roads must be built on the north and south sides of the four-lane highway.

And at each interchange, the CMT plan calls for an over-pass to be built, crossing the railroad tracks.
"This is a bridge over the railroad," he explained.
"One of the goals of this study, with safety first in mind, is to eliminate dangerous railroad crossings and stoplights. That's the purpose of the rail overpasses and outer roads."

Prange noted that "nothing is set in stone" until the project's design phase is completed; however, he added that he didn't see the plan presented in Seymour last week changing much, if at all.
"Seymour has been very good at coming out and providing us with input," he said. "At the first meeting at city hall, we had 44 present. The second meeting here at the senior center had 42 come out. And tonight's crowd looks very similar to the previous crowds we've had."

Seymour's attendance even was bolstered by a few Amish residents.
"We had a great turnout at our recent Diggins meeting by the Amish," Webster County Presiding Commissioner Paul lpock, R-Diggins, said. "The Amish community has been very helpful during this study, and we appreciate it."

The U.S. 60 Corridor Study has four sections, including:

- Rogersville, which has a 0.64-to-1 net BCA.
- Fordland, which has a 1.26-to-1 net BCA.
- Diggins, which has a 1.55-to-1 net BCA.
- Seymour, which has a 2.75-to-1 net BCA.

Heavy growth expected here Prange said that in the 2010 census, the population along the corridor was roughly 16,000 .

Today, that estimate is 19,712 .
"We realize that growth isn't going to stop," he said.
"We also believe that with highway improvements, that growth could really take off."

In CMT's overall plan, the U.S. 60 corridor in Webster County would get eight new interchanges between Cedar Gap and Rogersville.
"The economic potential in southern Webster County on this corridor is huge," Prange said.
"With this data, I suppose that what I'm saying is that if you build it, they will come."

Partners with the county in the U.S. 60 Corridor Study include Burlington Northern Santa Fe railroad, MoDOT and the Southwest Missour Council of Governments (SMCOG).

The project's price tag was more than \$200,000.

By the end of the year, CMT will post its final report on the project.

Then the company will go to work looking for grants and any type of funding.
"We don't have any money for this now, but I plan to make our case to every agency, federal and state, that will listen to me," Prange concluded

APPENDIX B

Traffic Models \& Safety Analysis

US 60 ROADWAY CRASHES - WEBSTER COUNTY (JAN 2012 - JUNE 2019)							
SECTION	Log mile	DIRECTION	CRASH CLASS	factors	Intersection	Date	SEVERITY RATING
ROGERSVILLE	97.418	EB	OUT OF CONTROL	TRAILER ATTACHED TO TRUCK BEGAN TO FISHTALL DURING A LANE CHANGE		43241	PROPERTY DAMAGE ONLY
ROGERSVILLE	97.529	EB	SIDESWIPE	HYDROPLANING		43319	PROPERTY DAMAGE ONLY
ROGERSVILLE	97.562	EB	Rear end	ASLEEP	MILL	42843	disabling InJury
ROGERSVILLE	97.566	EB	OUT OF CONTROL	DIDN'T SEE THE MEDIAN BETWEEN THE ROADWAY AND OFF RAMP, HIT A SIGN	MILL	42441	PROPERTY DAMAGE ONL
ROGERSVILLE	97.68	EB	REAR END	HYDROPLANING		41207	PROPERTY DAMAGE ONLY
ROGERSVILLE	97.709	WB	REAR END	HOPPED UP ON METHAMPHEDAMINES	MILL	42027	DISABLING INJURY
ROGERSVILLE	97.709	EB	REAR END	ALCOHOL	MILL	43588	PROPERTY DAMAGE ONLY
ROGERSVILLE	97.718	EB	OUT OF CONTROL	ALCOHOL	MILL	41994	PROPERTY DAMAGE ONLY
ROGERSVILLE	97.718	EB	OUT OF CONTROL	ICY ROADWAY	MILL	42015	PROPERTY DAMAGE ONLY
ROGERSVILLE	97.718	EB	RIGHT ANGLE	SLIPPED ON WET PAVEMENT IN CONSTRUCTION ZONE	MILL	42268	MINOR INJURY
ROGERSVILLE	97.718	EB	OTHER	TRAILER DETACHED FROM TRUCK AND STRUCK ANOTHER VEHICLE IN THE ROADWAY	MILL	43499	PROPERTY DAMAGE ONLY
ROGERSVILLE	98.366	EB	HEAD ON	ALCOHOL		41572	FATAL
ROGERSVILLE	98.419	EB	OUT OF CONTROL	IMPROPER PASSING, FORCED OFF THE ROADWAY AND STRUCK A ROADWAY SIGN		42588	PROPERTY DAMAGE ONLY
ROGERSVILLE	98.666	EB	PASSING	IMPROPER LANE CHANGE		42654	PROPERTY DAMAGE ONLY
ROGERSVILLE	98.766	EB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when Crossing the roadway	INDUSTRY	42003	PROPERTY DAMAGE ONLY
ROGERSVILLE	98.766	EB	RIGHT ANGLE	FAILED TO YilL TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	INDUSTRY	42125	PROPERTY DAMAGE ONLY
ROGERSVILLE	98.766	EB	RIGHT ANGLE	FAILED TO Yilld to incoming traffic when Crossing the roadway	INDUSTRY	42198	MINOR INJURY
ROGERSVILLE	98.766	EB	RIGHT ANGLE	FAILED TO YiELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	Industry	42364	MINOR INJURY
ROGERSVILLE	98.766	EB	RIGHT ANGLE	FAILED TO Yied to incoming traffic when Crossing the roadway	INDUSTRY	42383	PROPERTY DAMAGE ONLY
ROGERSVILLE	98.766	EB	RIGHT ANGLE	FAILED TO Yilld to incoming traffic when Crossing the roadway	INDUSTRY	42435	MINOR INJURY
ROGERSVILLE	98.788	EB	OTHER	OBJECT IN ROADWAY		41903	PROPERTY DAMAGE ONLY
ROGERSVILLE	99.288	EB	BACKING	SUICIDE ATTEMPT	WHITE OAK	42017	MINOR INJURY
ROGERSVILLE	99.288	EB	SIDESWIPE	SUICIDE ATTEMPT	WHITE OAK	42017	MINOR INJURY
ROGERSVILLE	99.288	EB	OTHER	OBJECT IN ROADWAY		43008	PROPERTY DAMAGE ONLY
ROGERSVILLE	99.288	EB	OUT OF CONTROL	FAILED TO YIELD CROSSING TRAFFIC	WHITE OAK	41056	PROPERTY DAMAGE ONLY
ROGERSVILLE	99.288	EB	RIGHT ANGLE	FAILED TO Yilld to incoming traffic when Crossing the roadway	WHITE OAK	41501	MINOR INJURY
ROGERSVILLE	99.288	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHILE MAKING A RIGHT TURN	WHITE OAK	41303	MINOR INJURY
ROGERSVILLE	99.288	EB	PASSING	IMPROPER PASSING, ADJACENT VEHICLE WAS IN THE BLIND SPOT OF A SEMI CHANGING LANES		42496	PROPERTY DAMAGE ONLY
ROGERSVILLE	99.288	EB	RIGHT ANGLE	FAILED TO Yilld to incoming traffic when Crossing the roadway	WHITE OAK	42727	MINOR INJURY
ROGERSVILLE	99.288	EB	RIGHT ANGLE	FAILED TO Yied To incoming traffic when Crossing the roadway	WHITE OAK	43105	MINOR INJURY
ROGERSVILLE	99.571	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	CENTER	41265	MINOR INJURY
ROGERSVILLE	99.598	EB	REAR END	TOOK A RIGHT TURN ONTO US6O: EITHER FAILED TO YIELD OR INCOMING VEHICLE WAS INATTENTIVE	CENTER	41020	PROPERTY DAMAGE ONLY
ROGERSVILLE	99.635	EB	LEFT TURN	FAILED TO Yield to incoming traffic when Crossing the roadway	CENTER	41438	PROPERTY DAMAGE ONLY
ROGERSVILLE	99.635	EB	OUT OF CONTROL	ASLEEP	CENTER	42448	MINOR INJURY
ROGERSVILLE	99.635	EB	REAR END	SEMI ATTEMPTED A RIGHT TURN TO ENTER EB US60 And HIT AN ADJACENT VEHICLE	CENTER	42682	disabling InJury
ROGERSVILLE	99.635	EB	OTHER	FAILED TO Yield to incoming traffic when crossing the roadway	CENTER	43332	PROPERTY DAMAGE ONLY
ROGERSVILLE	99.641	EB	REAR END	FAILED TO Yilld to incoming traffic when Crossing the roadway	CENTER	43092	PROPERTY DAMAGE ONLY
ROGERSVILLE	100.16	EB	REAR END	INATTENTVE TO SLOWED TRAFFIC MAKING A RIGHT TURN AHEAD	POWERLINE	43331	PROPERTY DAMAGE ONLY
ROGERSVILLE	100.166	EB	OTHER	MEDICAL ISSUES		41506	MINOR INJURY
ROGERSVILLE	100.166	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	POWERLINE	42448	MINOR INJURY
ROGERSVILLE	100.166	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	POWERLINE	43162	PROPERTY DAMAGE ONLY
ROGERSVILLE	100.32	EB	PASSING	ANIMAL IN ROADWAY		41212	PROPERTY DAMAGE ONLY
ROGERSVILLE	100.355	wB	AVoiding	ATTEMPTED A LANE CHANGE NOT KNOWING ANOTHER VEHICLE WAS THERE, OVERCORRECTED AND RAN OFF THE RIGHT SIDE OF ROADWAY		41523	MINOR INJURY
ROGERSVILLE	100.466	EB	REAR END	InATTENTVE TO SLOWED TRAFFIC AHEAD		43205	MINOR INJURY
ROGERSVILLE	100.466	EB	PASSING	IMPROPER LANE CHANGE		41570	PROPERTY DAMAGE ONLY
ROGERSVILLE	100.849	EB	OTHER	OBJECT IN ROADWAY		42249	PROPERTY DAMAGE ONLY
ROGERSVILLE	100.849	EB	RIGHT ANGLE	FAILED TO YilLD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	PORTER LOOP	43296	FATAL
Rogersville	101.149	EB	OUT OF CONTROL	ASLEEP		42604	FATAL
Rogersville	101.264	EB	ОTHER	OBJECT IN ROADWAY		43345	PROPERTY DAMAGE ONLY
ROGERSVILLE	101.498	EB	DEER	ANIMAL IN ROADWAY		43279	MINOR INJURY
Rogersville	101.657	EB	REAR END	IMPROPER LANE CHANGE/FOLLOWING TOO CLOSE		43471	PROPERTY DAMAGE ONLY
Rogersville	101.922	EB	Rear end	ICY ROADWAY		41354	PROPERTY DAMAGE ONLY
Rogersville	238.6	WB	JACKKNIFE	ANIMAL IN ROADWAY		43335	PROPERTY DAMAGE ONLY
ROGERSVILLE	238.606	EB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		43379	DISABLING INJURY
RoGERSVILLE	238.619	wB	OUT OF CONTROL	ANIMAL IN ROADWAY		42308	PROPERTY DAMAGE ONLY
RoGERSVILLE	238.624	WB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		43427	PROPERTY DAMAGE ONLY
Rogersville	238.656	wB	OUT OF CONTROL	Ran off the road on the left side, overcorrected and ran off the road on the right side		43057	PROPERTY DAMAGE ONLY
RoGERSVILLE	238.699	wB	AVOIDING	ANIMAL IN ROADWAY		42955	MINOR INJURY
Rogersville	238.951	EB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when crossing the roadway	PORTER LOOP	43066	PROPERTY DAMAGE ONLY
Rogersville	239.247	WB	CROSS MEDIAN	RAN OFF THE ROAD, NO ADIITIONAL INFORMATION		43559	PROPERTY DAMAGE ONLY
Rogersville	239.456	wB	OUT OF CONTROL	HYDROPLANING THROUGH THE ROGERSVILLE S-CURVE		41257	PROPERTY DAMAGE ONLY
Rogersville	239.552	WB	REAR END	IMPROPER LANE CHANGE		41668	MINOR INJURY
ROGERSVILLE	239.552	wB	OUT OF CONTROL	ASLEEP		42818	PROPERTY DAMAGE ONLY
ROGERSVILLE	239.676	wB	OUT OF CONTROL	ASLEEP		41528	PROPERTY DAMAGE ONLY
Rogersville	239.719	wB	OUT OF CONTROL	ASLEEP		41202	PROPERTY DAMAGE ONLY
RoGERSVILLE	239.752	WB	RIGHT ANGLE	FAILED TO Yilld TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	PORTER CROSSING	42047	MINOR INJURY
RoGERSVILLE	239.754	wB	PASSING	SIDESWIPE, NO ADDITIONAL INFORMATION		41623	PROPERTY DAMAGE ONLY
Rogersville	239.952	wB	PASSING	ANIMAL IN ROADWAY		41439	PROPERTY DAMAGE ONLY
Rogersville	239.956	wB	AVOIDING	INATTENTIVE TO TRAFFIC WHILL CHANGING LANES		41476	PROPERTY DAMAGE ONLY
Rogersville	240.226	EB	OUT OF CONTROL	BENT Down to Retrieve cigarette		43338	PROPERTY DAMAGE ONLY
RoGERSVILLE	240.252	wB	OUT OF CONTROL	HYDROPLANING THROUGH THE ROGERSVILLE S-CURVE		41258	PROPERTY DAMAGE ONLY
ROGERSVILLE	240.286	wB	OUT OF CONTROL	VEHICLE DEFECTS		43396	PROPERTY DAMAGE ONLY
ROGERSVILLE	240.356	wB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		41430	PROPERTY DAMAGE ONLY
ROGERSVILLE	240.399	WB	OUT OF CONTROL	HYDROPLANING THROUGH THE ROGERSVILLE S SUURVE		41258	PROPERTY DAMAGE ONLY
RoGERSVILLE	240.475	WB	PASSING	IMPROPER LANE CHANGE		42696	PROPERTY DAMAGE ONLY
RoGERSVILLE	240.56	EB	OUT OF CONTROL	DRIVER WAS ARGUING WITH HIS PASSENGER AND THE PASSENGER GRABBED THE STEERING WHEEL AND SWERVED OFF THE ROAD TO THE RIGHT		42521	PROPERTY DAMAGE ONLY
Rogersville	240.993	WB	DEER	ANIMAL IN ROADWAY		41943	PROPERTY DAMAGE ONLY
Rogersville	240.993	WB	TURN RIGHT ANGLE COLL	ICY ROADWAY	CENTER	42740	PROPERTY DAMAGE ONLY
RoGERSVILLE	240.993	wB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	CENTER	41110	PROPERTY DAMAGE ONLY
ROGERSVILLE	240.993	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	CENTER	41960	MINOR INJURY
ROGERSVILLE	241.002	wB	REAR END	FAILED TO YIELD TO INCOMING TRAFFIC WHILE MAKING A RIGHT TURN	CENTER	42237	PROPERTY DAMAGE ONLY
ROGERSVILLE	241.023	wB	DEER	ANIMAL IN ROADWAY		41930	PROPERTY DAMAGE ONLY
RoGERSVILLE	241.057	WB	OUT OF CONTROL	STRUCK ROADWAY SIGN WHILE ATTEMPTING A LEFT TURN	CENTER	41274	PROPERTY DAMAGE ONLY
ROGERSVILLE	241.297	EB	PASSING	SWERVED INTO ANOTHER VEHICLE DUE TO A VEHICLE BRAKING WITH NON FUNCTIONING LIGHTS		41194	PROPERTY DAMAGE ONLY
Rogersille	241.336	WB	RIGHT ANGLE	FAILED TO YilLD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	WHITE OAK	41801	MINOR INJURY
Rogersville	241.336	WB	RIGHT ANGLE	FAILED TO YilLD TO INCOMING TRAFFIC WHEN MAKING A LEFT TURN	WHITE OAK	43037	MINOR INJURY
RoGERSVILLE	241.336	wB	PASSING	ASLEEP		43134	PROPERTY DAMAGE ONLY
Rogersville	241.336	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	WHITE OAK	43430	FATAL
Rogersville	241.336	WB	RIGHT ANGLE	FAILED TO YilLD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	WHITE OAK	42272	FATAL
ROGERSVILLE	241.854	wB	REAR END	ICY ROADWAY		43476	PROPERTY DAMAGE ONLY
RoGERSVILLE	241.859	WB	REAR END	ICY ROADWAY		41344	PROPERTY DAMAGE ONLY
ROGERSVILLE	241.859	WB	OUT OF CONTROL	HYDROPLANING		41350	PROPERTY DAMAGE ONLY
Rogersville	241.859	EB	TURN RIGHT ANGLE COLL	FAILED TO YIELD TO INCOMING TRAFFIC WHILE MAKING A LEFT TURN	INDUSTRY	40911	MINOR INJURY
ROGERSVILLE	241.859	wB	OUT OF CONTROL	INATTENTIVE TO STOPPED TRAFFIC AT SIGNAL AHEAD, CHAIN REACTION REAR END CRASHES		41100	MINOR INJURY

US 60 ROADWAY CRASHES - WEBSTER COUNTY (JAN 2012 - JUNE 2019)							
SECTION	LOG MILE	DIRECTION	CRASH CLASS	FACTORS	INTERSECTION	Date	SEVERITY RATING
Rogersvilue	241.859	WB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when Crossing the roadway	INDUSTRY	41982	MINOR INJURY
ROGERSVILLE	241.859	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	INDUSTRY	42109	PROPERTY DAMAGE ONLY
ROGERSVILE	241.859	wB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when Crossing the roadway	INDUSTRY	42286	MINOR INJURY
ROGERSVILE	241.859	WB	turn right Angle colu	FAILED TO YIELD TO INCOMING TRAFFIC WHILE MAKING A LEFT TURN	INDUSTRY	42315	PROPERTY DAMAGE ON
ROGERSVILE	241.859	WB	TURN RIGHT ANGLE COLL	FAILED TO YIELD TO INCOMING TRAFFIC WHILE MAKING A LEFT TURN	INDUSTRY	42332	PROPERTY DAMAGE ONLY
ROGERSVILLE	241.859	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	INDUSTRY	42342	MINOR INJURY
ROGERSVILLE	241.859	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	INDUSTRY	42377	MINOR INJURY
ROGERSVILLE	241.859	EB	OUT OF CONTROL	ASLEEP		42680	PROPERTY DAMAGE ONLY
ROGERSVILE	241.859	wB	OUT OF CONTROL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A LEFT TURN	INDUSTRY	42927	fatal
Rogersvilu	241.859	WB	RIGHT ANGLE	FAILED TO Yilld to incoming traffic when Crossing the roadway	INDUSTRY	43118	PROPERTY DAMAGE ONLY
RoGERSVILE	241.859	WB	OUT OF CONTROL	FAILED TO Yield to incoming traffic when crossing the roadway	INDUSTRY	43251	MINOR INJURY
ROGERSVILE	241.859	WB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when crossing the roadway	INDUSTRY	43430	PROPERTY DAMAGE ONLY
ROGERSVILE	241.859	wB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when crossing the roadway	INDUSTRY	43596	MINOR INJURY
ROGERSVILE	241.949	WB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		41126	MINOR INJURY
ROGERSVILE	242.708	EB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		41422	PROPERTY DAMAGE ONLY
Rogersvilue	242.744	WB	AVoiding	OBJECT IN ROADWAY		43264	PROPERTY DAMAGE ONLY
ROGERSVILLE	242.808	WB	DEER	ANIMAL IN ROADWAY		41413	PROPERTY DAMAGE ONLY
Rogersvilu	242.851	WB	OTHER	OBJECT IN ROADWAY		42526	PROPERTY DAMAGE ONLY
RoGERSVILE	242.897	WB	OUT OF CONTROL	VEHICLE DEFECTS	MILL	42439	PROPERTY DAMAGE ONLY
ROGERSVILE	242.909	WB	FIXED OBJECT	SEVERE THUNDERSTORM BLEW OVER SEMI		42800	disabling InJury
ROGERSVILLE	243.307	wB	OUT OF CONTROL	ALCOHOL		41850	PROPERTY DAMAGE ONLY
FORDLAND	102.122	EB	PASSING	ALCOHOL		41708	PROPERTY DAMAGE ONLY
FORDLAND	102.122	EB	PASSING	IMPROPER LANE CHANGE		42053	PROPERTY DAMAGE ONLY
FORDLAND	102.597	EB	L NOT DEER/DOG/FARM A	ANIMAL IN ROADWAY		43014	PROPERTY DAMAGE ONLY
FORDLAND	102.622	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY	43508	PROPERTY DAMAGE ONLY
FORDLAND	102.658	EB	OTHER	OBJECT IN ROADWAY		42886	PROPERTY DAMAGE ONLY
FordLand	102.709	EB	CHANGING LANE	IMPROPER LANE CHANGE		43609	PROPERTY DAMAGE ONLY
FORDLAND	102.922	EB	REAR END	DISTRACTED BY ERADIC DRIVER IN ROADWAY, CHAIN REACTION OF REAR END CRASHES		41165	MINOR INJURY
FORDLAND	103.022	EB	REAR END	FOLLOWING TOO CLOSE		40992	MINOR INJURY
FORDLAND	103.986	EB	PASSING	INATTENTIVE TO TRAFFIC WHILE CHANGING LANES		41214	PROPERTY DAMAGE ONLY
FORDLAND	104.005	EB	REAR END	DISTRACTED BY CELL PHONE		41597	PROPERTY DAMAGE ONLY
FORDLAND	104.028	EB	OTHER	OBJECT IN ROADWAY	MOCKINGBIRD	41213	PROPERTY DAMAGE ONLY
FORDLAND	104.146	EB	HEAD ON	WRONG WAY CRASH, NO ADDITIONAL INFORMATION		43061	FATAL
FORDLAND	104.547	EB	OUT OF CONTROL	ASLEEP		43532	disabling injury
FORDLAND	104.572	EB	SIDESWIPE	WRONG WAY CRASH, VEHICLE HAD TO DO IIMMEDIATE LANE CHANGE TO AVOID HEAD ON COLLISION		41507	MINOR INJURY
FORDLAND	104.872	EB	RIGHT ANGLE	ICY ROADWAY	BURKS	43511	FATAL
FORDLAND	104.872	EB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when Crossing the roadway	BURKS	42114	PROPERTY DAMAGE ONLY
FORDLAND	104.872	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	BURKS	41696	DISABLING INJURY
FORDLAND	105.072	EB	OUT OF CONTROL	MEDICAL ISSUES		42523	MINOR INJURY
FORDLAND	105.072	EB	OTHER	ASLEEP		41446	MINOR INJURY
FORDLAND	105.112	WB	PASSING	ALCOHOL		41874	PROPERTY DAMAGE ONLY
FORDLAND	105.169	EB	OUT OF CONTROL	UNKNOWN CAUSES		42365	PROPERTY DAMAGE ONLY
FordLand	105.372	EB	JACKKNIFE	ICY ROADWAY		42388	PROPERTY DAMAGE ONLY
FORDLAND	105.483	EB	OUT OF CONTROL	DISTRACTED BY CELL PHONE		42799	MINOR INJURY
FORDLAND	105.609	EB	OTHER	OBJECT IN ROADWAY		43481	PROPERTY DAMAGE ONLY
FORDLAND	105.637	EB	OUT OF CONTROL	ICY ROADWAY		41344	PROPERTY DAMAGE ONLY
FORDLAND	105.637	EB	OUT OF CONTROL	ICY ROADWAY		41344	PROPERTY DAMAGE ONLY
FORDLAND	105.637	EB	OUT OF CONTROL	ICY RoADWAY		41344	PROPERTY DAMAGE ONLY
FORDLAND	105.637	EB	OUT OF CONTROL	ICY ROADWAY		41344	PROPERTY DAMAGE ONLY
FORDLAND	105.683	EB	OTHER	RaN OFF THE ROADWA ON THE LEFT SIDE WHILE ATTEMPTING TO MERGE ONTO US60	HWY PP	41486	MINOR INJURY
Fordiand	105.699	EB	REAR END	FOLLOWING TOO CLOSE		43496	PROPERTY DAMAGE ONLY
FORDLAND	105.726	EB	OUT OF CONTROL	ICY ROADWAY		41331	PROPERTY DAMAGE ONLY
FORDLAND	106.329	wB	OUT OF CONTROL	ALCOHOL		42610	MINOR INJURY
FORDLAND	106.329	WB	RIGHT ANGLE	VEHICLE WAS STOPPED IN ROADWAY		42610	MINOR INJURY
FORDLAND	106.329	WB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		42335	MINOR INJURY
FORDLAND	106.45	EB	PASSING	IMPROPER LANE CHANGE AT FAULT OF BOTH VEHICLES		41263	PROPERTY DAMAGE ONLY
FORDLAND	106.522	EB	OUT OF CONTROL	VEHICLE DEFECTS	HWY Z	42773	PROPERTY DAMAGE ONLY
FORDLAND	106.531	EB	OUT OF CONTROL	HYDROPLANED		42818	PROPERTY DAMAGE ONLY
FORDLAND	106.544	EB	OUT OF CONTROL	RAN OFF THE ROAD ON THE RIGHT SIDE, NO ADIITIONAL INFORMATION	HWY Z	41956	PROPERTY DAMAGE ONLY
FORDLAND	106.545	EB	OUT OF CONTROL	SWERVED TO AVOID UNSTABLE VEHICLE ON THE WET ROADWAY AHEAD		43476	PROPERTY DAMAGE ONLY
FORDLAND	106.546	EB	LEFT TURN	FAILED TO Yield to incoming traffic whle making a left turn	HWY Z	41168	PROPERTY DAMAGE ONLY
FORDLAND	106.55	EB	OUT OF CONTROL	ICY ROADWAY	HWY	41675	PROPERTY DAMAGE ONLY
FORDLAND	106.55	EB	ОTHER	ICY ROADWAY		42067	MINOR INJURY
FORDLAND	106.55	EB	OTHER	OBJECT IN ROADWAY		41556	PROPERTY DAMAGE ONLY
FORDLAND	106.55	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE Roadway	HWY	41592	PROPERTY DAMAGE ONLY
FORDLAND	106.55	EB	RIGHT ANGLE	FAILED TO YiELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY	41995	MINOR INJURY
FORDLAND	106.552	EB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when Crossing the roadway	HWY	42592	PROPERTY DAMAGE ONLY
FORDLAND	106.558	EB	OUT OF CONTROL	drugs		43335	MINOR INJURY
FORDLAND	106.572	EB	DEER	ANIMAL IN ROADWAY		43402	PROPERTY DAMAGE ONLY
FORDLAND	106.574	EB	DEBRIS	OBJECT IN ROADWAY		43238	PROPERTY DAMAGE ONLY
FORDLAND	106.756	WB	FARM ANIMAL	ANIMAL IN ROADWAY		41801	PROPERTY DAMAGE ONLY
FORDLAND	106.756	wB	FARM ANIMAL	ANIMAL IN ROADWAY		41801	PROPERTY DAMAGE ONLY
FORDLAND	107.085	EB	FIXED OBJECT	ICY ROADWAY		41674	PROPERTY DAMAGE ONLY
FORDLAND	107.436	EB	REAR END	VISION WAS OBSTRUCTED BY LARGE VEHICLE AHEAD SUDDENLY CHANGING LANES TO REVEAL A SLOWLY MOVING VEHICLE		43170	PROPERTY DAMAGE ONLY
FordLand	107.45	WB	OTHER	OBJECT IN RoADWAY		41242	PROPERTY DAMAGE ONLY
FORDLAND	107.525	EB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when crossing the roadway	HUMMINGBIRD	42756	MINOR INJURY
FORDLAND	107.625	EB	PASSING	IMPROPER LANE CHANGE		42840	PROPERTY DAMAGE ONLY
FORDLAND	107.871	EB	REAR END	DISTRACTED DRIVER WAS LOOKING AT PHONE AND DIDN' NOTICE THE VEHICLE SLOWING AHEAD		40970	MINOR INJURY
FORDLAND	107.925	EB	OTHER	OBJECT IN ROADWAY		41887	PROPERTY DAMAGE ONLY
FORDLAND	108.313	EB	REAR END	ICY ROADWAY		43494	PROPERTY DAMAGE ONLY
FORDLAND	108.365	EB	OUT OF CONTROL	ICY ROADWAY		42068	PROPERTY DAMAGE ONLY
FORDLAND	232.649	WB	OUT OF CONTROL	ICY ROADWAY		41675	PROPERTY DAMAGE ONLY
FORDLAND	232.714	wB	OUT OF CONTROL	ICY ROADWAY		43135	MINOR INJURY
FORDLAND	232.787	wB	OUT OF CONTROL	MEDICAL ISSUES		42428	MINOR INJURY
FORDLAND	233.329	wB	OUT OF CONTROL	CHILD UNBUCKLED SEAT BELT IN BACKSEAT, DRIVER TURNED TO ASSIST AND RAN OFF THE ROADWAY ON LEFT		41422	MINOR INJURY
FORDLAND	233.562	wB	OUT OF CONTROL	DISTRACTED BY DOG HAVING A TANTRUM IN THE BACKSEAT - ALSO MAYBE DRUGS?		42334	PROPERTY DAMAGE ONLY
FORDLAND	233.726	wB	DEER	ANIMAL IN ROADWAY		42297	MINOR INJURY
FORDLAND	233.862	WB	REAR END	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A RIGHT TURN ONTO US60	WINDSWEPT	42683	PROPERTY DAMAGE ONLY
FORDLAND	233.881	wB	PASSING	DISTRACTED BY VEHICLE PARKED IN THE RIGHT SHOULDER RESULTING IN SIDESWIPE		41508	MINORINJURY
FORDLAND	234.04	wB	OTHER	OBJECT IN ROADWAY		42444	PROPERTY DAMAGE ONLY
FORDLAND	234.05	wB	OUT OF CONTROL	ASLEEP		42905	PROPERTY DAMAGE ONLY
FORDLAND	234.062	WB	PASSING	NO INFORMATION		42208	PROPERTY DAMAGE ONLY
FORDLAND	234.062	WB	TURN RIGHT ANGLE COLL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A LEFFT TURN ONTO US60	HWYZ	43517	PROPERTY DAMAGE ONLY
FORDLAND	234.063	EB	FIXED OBJECT	DRIVER WAS NOT WATCHING WHERE HE WAS DRIVING	HWY	41481	PROPERTY DAMAGE ONLY
FORDLAND	234.065	WB	TURN RIGHT ANGLE COLL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A LEFT TURN ONTO US60	HWY	43024	MINOR INJURY

US 60 ROADWAY CRASHES - WEBSTER COUNTY (JAN 2012 - JUNE 2019)							
SECTIoN	Log MILE	DIRECTION	CRASH CLASS	factors	Intersection	Date	SEVERITY RATING
FORDLAND	234.112	wB	DEER	ANIMAL IN ROADWAY	hwy	41223	PROPERTY DAMAGE ONLY
Fordiand	234.176	wB	OUT OF CONTROL	ASLEEP		41237	MINOR INJURY
FORDLAND	234.222	WB	FIXED OBJECT	ASLEEP		43274	PROPERTY DAMAGE ONLY
FORDLAND	234.231	EB	REAR END	ALCOHOL		42453	fatal
FORDLAND	234.27	WB	OUT OF CONTROL	HYDROPLANING		41167	PROPERTY DAMAGE ONLY
FORDLAND	234.324	wB	AVOIDING	IMPROPER LANE CHANGE		42674	disabling injury
FORDLAND	234.535	WB	REAR END	INATTENTIVE TO SLOWED TRAFFIC AHEAD PREPARING TO TAKE A RIGHT TURN	HWYZ	41540	PROPERTY DAMAGE ONLY
FORDLAND	234.931	WB	OUT OF CONTROL	ICY ROADWAY		43092	PROPERTY DAMAGE ONLY
FORDLAND	234.931	WB	OUT OF CONTROL	ICY ROADWAY		43429	PROPERTY DAMAGE ONLY
FORDLAND	234.94	WB	FARM ANIMAL	ANIMAL IN ROADWAY		42077	MINOR INJURY
FORDLAND	234.941	WB	OUT OF CONTROL	HYDROPLANING		41252	PROPERTY DAMAGE ONLY
FORDLAND	234.946	wB	PASSING	ICY ROADWAY		41344	PROPERTY DAMAGE ONLY
FORDLAND	234.946	wB	OUT OF CONTROL	ICY ROADWAY		41344	PROPERTY DAMAGE ONLY
FORDLAND	234.96	wB	OUT OF CONTROL	ICY ROADWAY		41397	PROPERTY DAMAGE ONLY
FORDLAND	234.962	WB	OTHER	OBJECT IN ROADWAY		41242	PROPERTY DAMAGE ONLY
FORDLAND	234.965	WB	OUT OF CONTROL	ICY Roadway		41344	MINOR INJURY
FORDLAND	234.988	WB	OUT OF CONTROL	ICY ROADWAY		43477	MINOR INJURY
FORDLAND	234.994	wB	OUT OF CONTROL	ICY Roadway		42709	MINOR INJURY
FORDLAND	234.998	WB	OUT OF CONTROL	ICY ROADWAY		42807	MINOR INJURY
FORDLAND	235.003	WB	OUT OF CONTROL	ICY ROADWAY		41344	PROPERTY DAMAGE ONLY
FORDLAND	235.02	WB	PASSING	ICY ROADWAY		43477	PROPERTY DAMAGE ONLY
FORDLAND	235.028	WB	OUT OF CONTROL	ICY ROADWAY		41331	PROPERTY DAMAGE ONLY
FORDLAND	235.032	wB	OUT OF CONTROL	ICY ROADWAY		43153	MINOR INJURY
FORDLAND	235.032	wB	PASSING	IMPROPER LANE CHANGE		42818	PROPERTY DAMAGE ONLY
FORDLAND	235.04	WB	FARM ANIMAL	ANIMAL IN ROADWAY		42077	PROPERTY DAMAGE ONLY
FORDLAND	235.04	wB	OUT OF CONTROL	ICY ROADWAY		42366	PROPERTY DAMAGE ONLY
FORDLAND	235.04	wB	OUT OF CONTROL	ICY ROADWAY		43092	PROPERTY DAMAGE ONLY
FORDLAND	235.219	wB	FIXED OBJECT	HYDROPLANING		41350	PROPERTY DAMAGE ONLY
FORDLAND	235.24	wB	OUT OF CONTROL	NeGOTIATED A CURVE TOO FAST		42709	MINOR INJURY
FORDLAND	235.44	wB	DEER	ANIMAL IN ROADWAY		42535	disabling INJURY
FORDLAND	235.49	EB	OTHER	HYDROPLANED WHEN TAKING CURVE TOO FAST		41481	MINOR INJURY
FORDLAND	235.54	WB	OUT OF CONTROL	ICY ROADWAY		40952	MINOR INJURY
FORDLAND	235.579	WB	PASSING	IMPROPER LANE CHANGE		43407	PROPERTY DAMAGE ONLY
FORDLAND	235.74	wB	OUT OF CONTROL	HYDROPLANING		42181	PROPERTY DAMAGE ONLY
FORDLAND	235.74	WB	OUT OF CONTROL	ASLEEP		41719	PROPERTY DAMAGE ONLY
FORDLAND	235.74	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	BURKS	43221	PROPERTY DAMAGE ONLY
FORDLAND	235.748	WB	REAR END	INATTENTIVE TO STOPPED TRAFFIC AHEAD AT RIGHT TURN BAY ENTERING US60	BURKS	43556	PROPERTY DAMAGE ONLY
FORDLAND	235.755	wB	REAR END	REAR END CRASH, NO ADIITIONAL INFORMATION GIVEN	INDUSTRY	43104	MINOR INJURY
FORDLAND	235.84	WB	REAR END	FOLLOWING TOO CLOSE		41485	MINOR INJURY
FORDLAND	235.929	WB	OTHER	OBJECT IN ROADWAY		41222	PROPERTY DAMAGE ONLY
FORDLAND	236.023	wB	OUT OF CONTROL	AsLEEP		42575	DISABLING INJURY
FORDLAND	236.04	WB	OUT OF CONTROL	ICY ROADWAY		42051	PROPERTY DAMAGE ONLY
FORDLAND	236.081	wB	OUT OF CONTROL	RAN OFF THE ROADWAY ON THE RIGHT SIDE IN AN ATTEMPT TO AVOID A PARKED POLICE CAR ON THE RIGHT SHOULDER		41493	PROPERTY DAMAGE ONLY
FORDLAND	236.397	wB	DEER	ANIMAL IN ROADWAY		41793	PROPERTY DAMAGE ONLY
FORDLAND	236.449	WB	OTHER	OBJECT IN ROADWAY		42379	PROPERTY DAMAGE ONLY
FORDLAND	236.467	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	MOCKINGBIRD	42266	PROPERTY DAMAGE ONLY
FORDLAND	236.498	wB	OUT OF CONTROL	MEDICAL ISSUES		41169	FATAL
FORDLAND	236.577	WB	FIXED OBJECT	ASLEEP		42323	MINOR INJURY
FORDLAND	236.586	WB	REAR END	INATTENTVE TO SLOWED TRAFFIC AHEAD	IRON MOUNTAIN	42379	MINOR INJURY
FORDLAND	236.609	wB	OUT OF CONTROL	SLIPPED ON WET PAVEMENT WHILE CHANGING LANES		42304	PROPERTY DAMAGE ONLY
FORDLAND	236.697	wB	FARM ANIMAL	ANIMAL IN ROADWAY		43426	PROPERTY DAMAGE ONLY
FORDLAND	236.75	wB	REAR END	IMPROPER LANE CHANGE		43001	MINOR INJURY
FORDLAND	236.986	WB	OUT OF CONTROL	ASLEEP		42863	MINOR INJURY
FordLand	237.052	WB	OTHER	OBJECT IN ROADWAY		41361	PROPERTY DAMAGE ONLY
FORDLAND	237.081	wB	OUT OF CONTROL	POLICE VEHICLE DAMAGED UNDERCARRIAGE ATTEMPTING TO DRIVE INTO MEDIAN TO INVESTIGATE INCIDENT		43125	PROPERTY DAMAGE ONLY
FordLand	237.086	WB	OUT OF CONTROL	VEHICLE DEFECTS		40985	PROPERTY DAMAGE ONLY
FORDLAND	237.086	wB	CHANGING LANE	POLICE OFFICER PULLED VEHICLE OVER IN THE LEFT SHOULDER THEN TOLD THE DRIVER TO RELOCATE TO THE RIGHT SHOULDER RESULTING IN AN INCIDENT		41598	PROPERTY DAMAGE ONLY
FordLand	237.086	WB	OUT OF CONTROL	SWERVED TO AVOID COLISIION DUE TO IMPROPER LANE CHANGE		43360	PROPERTY DAMAGE ONLY
FORDLAND	237.255	WB	REAR END	INATTENTVE TO SLOWED TRAFFIC AHEAD (VEHICLE DEFECTS RESUULTED IN SLOW TRAVEL SPEED)		42114	MINOR INJURY
FORDLAND	237.599	wB	DOG	ANIMAL IN ROADWAY		42697	PROPERTY DAMAGE ONLY
FordLand	237.827	WB	REAR END	DRIVING TOO FAST AND REAR ENDED A VEHICLE AHEAD		43121	MINOR INJURY
FordLand	237.876	wB	OUT OF CONTROL	VEHICLE DEFECTS		41236	PROPERTY DAMAGE ONLY
FORDLAND	237.916	wB	PASSING	IMPROPER LANE CHANGE		43019	PROPERTY DAMAGE ONLY
FORDLAND	237.986	wB	REAR END	INATtENTIVE TO SLOWED TRAFFIC AHEAD PREPARING TO TAKE A RIGHT TURN	RED OAK	43338	MINOR INJURY
FORDLAND	237.999	wB	OUT OF CONTROL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY	42110	MINOR INJURY
FORDLAND	237.999	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY		42061	PROPERTY DAMAGE ONLY
FORDLAND	238.01	wB	OTHER	OBJECT IN ROADWAY		42978	PROPERTY DAMAGE ONLY
FORDLAND	238.032	wB	REAR END	DISTRACTED BY CELL PHONE		43027	MINOR INJURY
FORDLAND	238.036	WB	OTHER	OBJECT IN ROADWAY		43329	PROPERTY DAMAGE ONLY
FORDLAND	238.098	WB	OUT OF CONTROL	HYDROPLANING		43193	PROPERTY DAMAGE ONLY
FORDLAND	238.199	WB	PASSING	IMPROPER LANE CHANGE		42461	PROPERTY DAMAGE ONLY
FORDLAND	238.399	WB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		41258	MINORINJURY
FORDLAND	238.399	wB	OUT OF CONTROL	NEGOTIATED A CURVE TOO FAST		42611	MINOR INJURY
FORDLAND	238.469	wB	OUT OF CONTROL	TOOK A CURVE AND LANE CHANGE TOO FAST AND RAN OFF THE ROADWAY ON THE LEFT SIDE		43337	MINOR INJURY
FORDLAND	238.499	wB	OUT OF CONTROL	HYDROPLANING		41491	PROPERTY DAMAGE ONLY
FORDLAND	238.499	wB	OUT OF CONTROL	FORCED ONTO SHOULDER BY A VEHICLE IMPROPERLY PASSING, STRUCK A ditch		40980	PROPERTY DAMAGE ONLY
FORDLAND	238.499	wB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		42324	MINOR INJURY
FORDLAND	238.546	wB	OUT OF CONTROL	SWERVED TO AVOID COLIISION DUE TO IMPROPER LANE CHANGE		43341	PROPERTY DAMAGE ONLY
FORDLAND	238.591	wB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		43073	PROPERTY DAMAGE ONLY
FORDLAND	238.595	WB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		43054	PROPERTY DAMAGE ONLY
FORDLAND	238.599	WB	OUT OF CONTROL	ICY ROADWAY		41613	PROPERTY DAMAGE ONLY
DIGGINS	108.411	EB	OTHER	OBJECT IN Roadway		42595	PROPERTY DAMAGE ONLY
DIGGINS	108.465	EB	OUT OF CONTROL	ICY ROADWAY		41675	MINOR INJURY
DIGGINS	108.465	EB	OUT OF CONTROL	ASLEEP		42280	MINOR INJURY
DIGGINS	108.49	EB	OTHER	OBJECT IN ROADWAY		43093	PROPERTY DAMAGE ONLY
DIGGINS	108.564	EB	RIGHT TURN	HEAVY FOG OBSTRUCTED VISION OF ALL DRIVERS	HONOR CAMP	43109	MINOR INJURY
DIGGINS	108.565	EB	RIGHT ANGLE	HEAVY FOG OBSTRUCTED VISION OF ALL DRIVERS	HONOR CAMP	41978	DISABLING INJURY
DIGGINS	108.565	EB	OUT OF CONTROL	ALCOHOL		42973	PROPERTY DAMAGE ONLY
DIGGINS	108.565	EB	CHANGING LANE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A LEFT TURN ONTO US60	HONOR CAMP	42981	PROPERTY DAMAGE ONLY
DIGGINS	108.567	EB	REAR END	IMPROPER LANE CHANGE		41964	MINOR INJURY
DIGGINS	108.579	EB	DOG	ANIMAL IN ROADWAY		42650	PROPERTY DAMAGE ONLY
DIGGINS	108.605	EB	OTHER	OBJECT IN ROADWAY		43060	PROPERTY DAMAGE ONLY
DIGGINS	108.631	EB	REAR END	CRASHED INTO VEHICLES STOPPED FOR A PREVIIOUS ACCIDENT AT THIS LOCATION		41964	PROPERTY DAMAGE ONLY
DIGGINS	109.097	EB	OUT OF CONTROL	RAN OF THE ROAD ON THE RIGHT SIDE DUE TO TAKING A CURVE TOO FAST		42310	MINOR INJURY

US 60 ROADWAY CRASHES - WEBSTER COUNTY (JAN 2012 - JUNE 2019)							
SECTION	LOG MILE	DIRECTION	CRASH CLASS	factors	Intersection	Date	SEVERITY RATING
DIGGINS	109.249	EB	OUT OF CONTROL	ICY ROADWAY		42721	MINOR INJURY
DIGGINS	109.397	EB	OUT OF CONTROL	ICY ROADWAY		41330	PROPERTY DAMAGE ONLY
DIGGINS	109.497	EB	OUT OF CONTROL	ICY ROADWAY		41648	MINOR INJURY
DIGGINS	109.552	EB	OUT OF CONTROL	ALCOHOL		42913	MINOR INJURY
DIGGINS	109.597	EB	PASSING	HYDROPLANING		41441	PROPERTY DAMAGE ONLY
DIGGINS	109.597	EB	OUT OF CONTROL	POTENTIAL SEXUAL TOUCHING IN THE VEHICLE RESULTED IN IT RUNNING OFF THE ROADWAY ON THE RIGHT SIDE AND OVERTURNING PAST THE RR TRACKS		42308	DISABLING INJURY
DIGGINS	109.597	EB	OUT OF CONTROL	MEDICAL ISSUES		42563	disabling InJury
DIGGINS	109.802	EB	OUT OF CONTROL	RAN OF THE LEFT SIDE OF THE ROADWAY WHEN TAKING A CURVE TOO FAST		41968	MINOR INJURY
DIGGINS	109.803	EB	OUT OF CONTROL	AsLEEP		42612	MINOR INJURY
DIGGINS	109.805	EB	PASSING	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A LEFT TURN ONTO US60	HWY A	42832	PROPERTY DAMAGE ONLY
DIGGINS	109.835	EB	OUT OF CONTROL	SWERVED TO AVOID COLIISION DUE TO IMPROPER LANE CHANGE		42102	PROPERTY DAMAGE ONLY
DIGGINS	110.01	EB	PARKING OR PARKED CARI	INATTENTVE TO THE VEHICLE PARKED ON THE RIGHT SHOULDER AND CLIPPED IT		43310	PROPERTY DAMAGE ONLY
DIGGINS	110.097	EB	REAR END	ICY ROADWAY		42721	PROPERTY DAMAGE ONLY
DIGGINS	110.2	WB	DEER	ANIMAL IN ROADWAY		41950	MINOR INJURY
DIGGINS	110.211	EB	PASSING	IMPROPER LANE CHANGE		43250	PROPERTY DAMAGE ONLY
DIGGINS	110.226	EB	CHANGING LANE	HYDROPLANING		41403	PROPERTY DAMAGE ONLY
DIGGINS	110.226	EB	OUT OF CONTROL	AsLEEP		42217	PROPERTY DAMAGE ONLY
DIGGINS	110.226	EB	OUT OF CONTROL	ASLEEP		42613	PROPERTY DAMAGE ONLY
DIGGINS	110.226	EB	OUT OF CONTROL	NEGOTATED A CURVE TOO FAST		42767	PROPERTY DAMAGE ONLY
DIGGINS	110.303	EB	PASSING	ROAD RAGE INCIDENT		42543	PROPERTY DAMAGE ONLY
digGins	110.326	ев	DRAWN VEH OR RIDDEN	AN UNOCCUPIED HORSE AND BUGGY RAN INTO THE ROADWAY AND WAS STRUCK BY ANOTHER VEHICLE	HWY NN	41257	PROPERTY DAMAGE ONLY
DIGGINS	110.326	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY NN	41281	MINOR INJURY
DIGGINS	110.326	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY NN	41609	disabling InJury
DIGGINS	110.326	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY NN	42072	MINOR INJURY
DIGGINS	110.331	EB	OUT OF CONTROL	DRIVING TOO FAST DURING A RAIN EVENT AND HYDROPLANED		43186	PROPERTY DAMAGE ONLY
DIGGINS	110.426	EB	PASSING	IMPROPER LANE CHANGE		43223	PROPERTY DAMAGE ONLY
DIGGINS	110.526	EB	OUT OF CONTROL	INATTENTIVE TO SLOWED TRAFFIC AHEAD AND SWERVED TO MISS IT, RUNNING OFF THE ROAD ON THE RIGHT SIDE THEN THE LEFT SIDE		43063	PROPERTY DAMAGE ONLY
DIGGINS	110.679	EB	OUT OF CONTROL	ICY ROADWAY		42388	MINOR INJURY
DIGGINS	110.717	EB	OUT OF CONTROL	DISTRACTED BY TRAIN BESIDE ROADWAY		43163	PROPERTY DAMAGE ONLY
DIGGINS	110.779	EB	OUT OF CONTROL	AsLEEP		41585	PROPERTY DAMAGE ONLY
DIGGINS	110.798	EB	PASSING	FAILED TO YilLD TO INCOMING TRAFFIC WHEN MAKING A LEFT TURN ONTO US60	HwY	42704	PROPERTY DAMAGE ONLY
DIGGINS	111.179	EB	OUT OF CONTROL	ICY ROADWAY		41648	PROPERTY DAMAGE ONLY
DIGGINS	111.422	EB	OUT OF CONTROL	HYDROPLANING		41767	FATAL
DIGGINS	111.549	EB	OTHER	RAN OFF THE ROAD ON THE RIGHT SIIE, NO ADDITIONAL INFORMATION	RAIL	42508	DISABLING INJURY
DIGGINS	112.237	EB	OUT OF CONTROL	STRANDED MOTORIST WAS IN ROADWAY		41648	PROPERTY DAMAGE ONLY
DIGGINS	112.389	EB	DEER	ANIMAL IN ROADWAY		41178	MINOR INJURY
DIGGINS	112.557	EB	OUT OF CONTROL	OBJECT IN ROADWAY		42214	MINOR INJURY
DIGGINS	112.57	EB	OTHER	ALCOHOL		43317	PROPERTY DAMAGE ONLY
DIGGINS	112.833	EB	OUT OF CONTROL	AsLEEP		42562	PROPERTY DAMAGE ONLY
DIGGINS	113.13	EB	OUT OF CONTROL	ASLEEP		41350	PROPERTY DAMAGE ONLY
DIGGINS	113.187	EB	OUT OF CONTROL	MEDICAL ISSUES		41166	PROPERTY DAMAGE ONLY
DIGGINS	113.258	EB	OTHER	VEHICLE DEFECTS		42569	PROPERTY DAMAGE ONLY
DIGGINS	113.506	EB	REAR END	ICY ROADWAY		41647	PROPERTY DAMAGE ONLY
DIGGINS	113.613	EB	TURN RIGHT ANGLE COLL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	BOX SCHOOL LOOP	43188	PROPERTY DAMAGE ONLY
DIGGINS	113.645	EB	REAR END	AsLEEP		41848	PROPERTY DAMAGE ONLY
DIGGINS	113.751	EB	OTHER	OBJECT IN ROADWAY		41223	PROPERTY DAMAGE ONLY
DIGGINS	226.887	WB	OUT OF CONTROL	ALCOHOL		43497	PROPERTY DAMAGE ONLY
DIGGINS	227.1	WB	REAR END	IMPROPER LANE CHANGE		43233	PROPERTY DAMAGE ONLY
DIGGINS	227.239	wB	OTHER	OBJECT IN Roadway		41661	PROPERTY DAMAGE ONLY
DIGGINS	227.257	wB	REAR END	RAN OFF THE ROAD ON THE RIGHT SIDE, OVERCORRECTED, RE-ENTERED THE ROADWAY AND STRUCK ANOTHER VEHICLE		43009	disabling injury
DIGGINS	227.764	wB	FARM ANIMAL	ANIMAL IN ROADWAY		41424	PROPERTY DAMAGE ONLY
DIGGINS	227.969	EB	PASSING	IMPROPER LANE CHANGE		42221	PROPERTY DAMAGE ONLY
DIGGINS	228.003	WB	REAR END	FOLLOWING TOO CLOSE TO VEHICLE SLOWING FOR ANOTHER VEHICLE THAT HAD JUST ENTERED THE ROADWAY	SHORT	43231	PROPERTY DAMAGE ONLY
DIGGINS	228.074	WB	PASSING	IMPROPER LANE CHANGE		43228	PROPERTY DAMAGE ONLY
DIGGINS	228.114	WB	PASSING	AsLEEP		42549	MINOR INJURY
DIGGINS	228.3	WB	RIGHT TURN	INATTENTIVE TO SLOWED TRAFFIC AHEAD PREPARING TO TAKE A RIGHT TURN	BERRY	42095	PROPERTY DAMAGE ONLY
DIGGINS	228.349	WB	FARM ANIMAL	ANIMAL IN ROADWAY		42863	PROPERTY DAMAGE ONLY
DIGGINS	228.363	WB	OUT OF CONTROL	VEHICLE DEFECTS		41853	PROPERTY DAMAGE ONLY
DIGGINS	228.396	WB	dRawn Veh or rideen	DRIVER OF HORSE AND BUGGY IMPROPERLY CHANGED LANES AND WAS STRUCK BY ANOTHER VEHICLE		41404	MINOR INJURY
DIGGINS	228.563	WB	REAR END	AsLEEP		41581	PROPERTY DAMAGE ONLY
DIGGINS	228.682	WB	OUT OF CONTROL	AsLEEP	BOX SCHOOL LOOP	42661	PROPERTY DAMAGE ONLY
DIGGINS	228.863	WB	OTHER	OBJECT IN ROADWAY		42903	PROPERTY DAMAGE ONLY
DIGGINS	229.115	WB	OUT OF CONTROL	RAN OfF THE ROAD, NO Aditional information		43567	DISABLING INJURY
DIGGINS	229.305	WB	RIGHT TURN	IMPROPER PASSING ON THE RIGHT SHOULDER FOR A VEHICLE MAKING A RIGHT TURN	HWY O	42587	DISABLING INJURY
DIGGINS	229.792	WB	REAR END	INATTENTIVE TO SLOWED TRAFFIC AHEAD PREPARING TO TAKE A RIGHT TURN	HWY O	41684	PROPERTY DAMAGE ONLY
DIGGINS	229.793	WB	REAR END	INATTENTIVE TO SLOWED TRAFFIC AHEAD PREPARING TO TAKE A RIGHT TURN	HWY O	42223	MINOR INJURY
DIGGINS	229.805	wB	OUT OF CONTROL	HYDROPLANED		42152	PROPERTY DAMAGE ONLY
DIGGINS	229.805	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY O	42475	MINOR INJURY
DIGGINS	230.159	wB	AVoiding	OBJECT IN Roadway		41470	PROPERTY DAMAGE ONLY
DIGGINS	230.159	wB	DRAWN VEH OR RIDDEN.	DISTRACTED BY CELL PHONE		43029	MINOR INJURY
DIGGINS	230.284	WB	HEAD ON	MEDICAL ISSUES		42805	DISABLING INJURY
DIGGINS	230.292	WB	OUT OF CONTROL	DRIVER INTENTIONALLY DROVE INTO THE MEDIAN, NOT EXPECTING TO OVERTURN FUTHER DOWN		43295	MINOR INJURY
DIGGINS	230.696	wB	OUT OF CONTROL	AsLEEP		43050	PROPERTY DAMAGE ONLY
DIGGINS	230.79	WB	OUT OF CONTROL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY A	43128	PROPERTY DAMAGE ONLY
DIGGINS	230.819	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	43021	MINOR INJURY
DIGGINS	230.822	wB	OTHER	OBJECT IN ROADWAY		41498	PROPERTY DAMAGE ONLY
DIGGINS	230.822	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY A	41417	PROPERTY DAMAGE ONLY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when crossing the roadway	HWY A	41454	MINOR INJURY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	41530	PROPERTY DAMAGE ONLY
DIGGINS	230.822	WB	RIGHT ANGLE	DISTRACTED BY HORSE AND BUGGY WHLLE CROSSING ROADWAY	HWY A	41814	PROPERTY DAMAGE ONLY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	42085	disabling InJury
DIGGINS	230.822	WB	DRawn veh or ridoen	Horse and bugay falled to Yield to incoming traffic when crossing the roadway	HWY	42146	fatal
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	42243	MINOR INJURY
DIGGINS	230.822	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY A	42418	PROPERTY DAMAGE ONLY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	42431	DISABLING INJURY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY A	42687	PROPERTY DAMAGE ONLY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	42718	MINOR INJURY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	43003	MINOR INJURY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWYA	43057	MINOR INJURY
DIGGINS	230.822	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	HWY A	43060	MINOR INJURY
DIGGINS	230.822	wB	RIGHT ANGLE	IMPATIENT DRIVER PASSED THE VEHICLE AHEAD WAITING IN THE MEDIAN CROSSOVER AND FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING ROADWAY	hWYa	43108	disabling injury

US 60 ROADWAY CRASHES - WEBSTER COUNTY (JAN 2012 - JUNE 2019)							
section	Log mile	DIRECTION	CRASH CLASS	factors	Intersection	Date	SEVERITY Rating
DIGGINS	230.824	WB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when Crossing the roadway	HWY	42076	fatal
DIGGINS	230.875	wB	OTHER	OBJECT IN ROADWAY		42645	PROPERTY DAMAGE ONLY
DIGGINS	230.891	wB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		43404	PROPERTY DAMAGE ONLY
DIGGINS	231.022	WB	CHANGING LANE	HYDROPLANING		41894	PROPERTY DAMAGE ONLY
DIGGINS	231.322	WB	OTHER	OBJECT IN Roadway		41758	PROPERTY DAMAGE ONLY
DIGGINS	231.597	WB	OUT OF CONTROL	MEDICAL ISSUES		43461	PROPERTY DAMAGE ONLY
DIGGINS	231.758	EB	OTHER	OBJECT IN ROADWAY	HONOR CAMP	42566	PROPERTY DAMAGE ONLY
DIGGINS	231.816	WB	JACKKNIFE	VEHICLE DEFECTS		43271	PROPERTY DAMAGE ONLY
DIGGINS	232.052	wB	REAR END	ICY ROADWAY	HONOR CAMP	43115	MINORINJURY
DIGGINS	232.456	WB	OUT OF CONTROL	ASLEEP		43462	MINOR INJURY
SEYMOUR	114.303	EB	REAR END	ATTEMPTED A LEFT TURN FROM THE PASSING LANE AT SIGNAL AND NOT THE LLEFT TURN LANE	CLINTON	41311	PROPERTY DAMAGE ONLY
SEYMOUR	114.326	EB	REAR END	FOOT SLIPPED ON BRAKE PEDAL FROM WET SHOES AFTER ALL VEHICLES WERE SAFELY STOPPED AT THE SIGNALIZED INTERSECTION	CLINTON	42995	MINOR INJURY
SEYMOUR	114.327	EB	OUT OF CONTROL	HEAVY FOG OBSTRUCTED VIIION	CLINTON	43153	PROPERTY DAMAGE ONLY
SEYMOUR	114.327	EB	U- TURN	FAlLED To YIELD AT SIGNALZED INTERSECTION WHILE MAKING LLEFT TURN	CLINTON	41108	PROPERTY DAMAGE ONLY
SEYMOUR	114.331	EB	OTHER	VEHICLE DEFECTS	CLINTON	41502	PROPERTY DAMAGE ONLY
SEYMOUR	114.337	EB	PASSING	HYDROPLANED APPROACHING RED LIGHT AT SIGNALIZED INTERSECTION	CLINTON	42076	PROPERTY DAMAGE ONLY
SEYMOUR	114.338	EB	REAR END	VEHICLE DEFECTS	CLINTON	42483	PROPERTY DAMAGE ONLY
SEYMOUR	114.341	EB	RIGHT ANGLE	FALLED TO YIELD To Incoming traffic at red light	CLINTON	42568	PROPERTY DAMAGE ONLY
SEYMOUR	114.343	EB	PASSING	MEDICAL ISSUES	CLINTON	41249	PROPERTY DAMAGE ONLY
SEYMOUR	114.344	EB	LEFT TURN	RAN A RED LIGHT AT SIGNALIZED INTERSECTION	CLINTON	41226	MINOR INJURY
SEYMOUR	114.345	EB	RIGHT ANGLE	DRIVER DID NOT HEAR OR SEE EMERGENCY LIGHTS AND HIT THE EMERGENCY RESPONSE VEHICLE IN A	CLINTON	42122	MINOR INJURY
SEYMOUR	114.345	EB	REAR END	MEDICAL ISSUES	CLINTON	42415	DISABLING INJURY
SEYMOUR	114.345	EB	RIGHT ANGLE	DISTRACTED BY RADIO	CLINTON	43631	DISABLING INJURY
SEYMOUR	114.345	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC AT SIGNAL AHEAD	CLINTON	43365	PROPERTY DAMAGE ONLY
SEYMOUR	114.345	EB	OUT OF CONTROL	FALLED TO YIELD TO INCOMING TRAFFIC AT RED LIGHT	CLINTON	43584	MINOR INJURY
SEYMOUR	114.345	EB	RIGHT ANGLE	FAILED TO YiELD To Incoming traffic at Signal ahead	CLINTON	43301	DISABLING INJURY
SEYMOUR	114.347	EB	RIGHT ANGLE	FAlLED TO YieLd to incoming traffic at red light	CLINTON	42320	DISABLING INJURY
SEYMOUR	114.352	EB	TURN RIGIT ANGLE COLL	ALCOHOL	CLINTON	41755	PROPERTY DAMAGE ONLY
SEYMOUR	114.353	EB	TURN RIGHT ANGLE COLL	DISTRACTED BY CELL PHONE	CLINTON	42405	PROPERTY DAMAGE ONLY
SEYMOUR	114.353	wB	REAR END	INATTENTVE TO STOPPED TRAFFIC AT SIGNAL AHEAD	CLINTON	41936	PROPERTY DAMAGE ONLY
SEYMOUR	114.358	EB	REAR END	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A RIGHT TURN ONTO US60	CLINTON	42922	MINOR INJURY
SEYMOUR	115.1	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	SKYLINE	42135	MINOR INJURY
SEYMOUR	115.103	EB	CROSS MEDIAN	LIMITED VIIIBLITY - SUN WAS SHINING DIRECTLY INTO EYES	SKYLINE	43425	MINOR INJURY
SEYMOUR	115.103	EB	RIGHT ANGLE	FAILED TO YilLD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	SKYLINE	40921	DISABLING INJURY
SEYMOUR	115.103	EB	RIGHT ANGLE	FAILED TO Yilld to incoming traffic when Crossing the roadway	SKYLINE	41033	PROPERTY DAMAGE ONLY
SEYMOUR	115.103	EB	SIDESWIPE	TOOK A U-TURN TOO TIGHT AND HIT ANOTHER VEHICLE IN THE MEDIAN CROSSOVER	SKYLINE	41530	PROPERTY DAMAGE ONLY
SEYMOUR	115.103	EB	RIGHT ANGLE	FAILED TO Yield to incoming traffic when crossing the roadway	SKYLINE	42561	PROPERTY DAMAGE ONLY
SEYMOUR	115.236	EB	REAR END	INATTENTIVE TO SLOWED TRAFFIC THAT HAD JUST ENTERED THE ROADWAY	SKYLINE	43064	PROPERTY DAMAGE ONLY
SEYMOUR	115.273	EB	OUT OF CONTROL	VEHICLE WAS STOPPED IN ROADWAY		41657	PROPERTY DAMAGE ONLY
SEYMOUR	115.305	EB	HEAD ON	ALCOHOL		42378	MINOR INJURY
SEYMOUR	115.505	EB	JACKKNIFE	ICY ROADWAY	CLINTON	41334	PROPERTY DAMAGE ONLY
SEYMOUR	116.236	EB	dRawn veh or ridden	AN UNOCCUPIED HORSE AND BUGGY RAN INTO THE ROADWAY AND WAS STRUCK BY Another vehicle	HWY C/Kk	42975	PROPERTY DAMAGE ONLY
SEYMOUR	116.304	EB	REAR END	HYDROPLANING	HWY C/Kk	41920	MINOR INJURY
SEYMOUR	116.304	wB	PASSING	TWO VEHICLES ENTERED THE INTERSECTIONS FROM DIFFERENT DIRECTIONS AT THE SAME TIME AND COLIDED		42325	PROPERTY DAMAGE ONLY
SEYMOUR	116.311	WB	PASSING	IMPROPER LANE CHANGE		42099	PROPERTY DAMAGE ONLY
SEYMOUR	116.313	EB	REAR END	Following too close at red light	HWY C/KK	42461	PROPERTY DAMAGE ONLY
SEYMOUR	116.317	EB	REAR END	InATtentive to slowed traffic Ahead at signal	нWY C/Kk	41612	DISABLING INJURY
SEYMOUR	116.321	EB	REAR END	DISTRACTED BY CELL PHONE	HWY C/KK	43007	PROPERTY DAMAGE ONLY
SEYMOUR	116.323	EB	OUT OF CONTROL	InATtentive to slowed traffic Ahead at signal	HWY C/KK	42339	DISABLING INJURY
SEYMOUR	116.324	EB	REAR END	VEHICLE DEFECTS	HWY C/KK	42544	PROPERTY DAMAGE ONLY
SEYMOUR	116.332	EB	REAR END	INATTENTVE TO STOPPED TRAFFIC AHEAD AT SIGNAL	HWY C/KK	42761	PROPERTY DAMAGE ONLY
SEYMOUR	116.333	wB	RIGHT ANGLE	FAlLED TO YIELD To Incoming traffic at red light	HWY C/KK	42076	DISABLING INJURY
SEYMOUR	116.334	EB	TURN RIGHT ANGLE COLL	FAILED TO YIELD To Incoming traffic when making a Left turn at Signal	HWY C/KK	42070	DISABLING INJURY
SEYMOUR	116.336	EB	REAR END	FOLLOWING TOO CLOSE ENTERING US60- REAR END CRASH IN RIGHT TURN BAY	SKYLINE	41123	PROPERTY DAMAGE ONLY
SEYMOUR	116.336	EB	PASSING	IMPROPER LANE CHANGE		42723	PROPERTY DAMAGE ONLY
SEYMOUR	116.336	EB	LEFT TURN	FAILED TO YIELD To Incoming traffic at Signal ahead	HWY C/KK	43304	MINOR INJURY
SEYMOUR	116.337	EB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC AT RED LIGHT	HWY C/Kk	42116	MINOR INJURY
SEYMOUR	116.337	EB	REAR END	INATTENTVE TO SLOWED TRAFFIC AHEAD AT SIGNAL	HWY C/KK	42333	PROPERTY DAMAGE ONLY
SEYMOUR	116.338	WB	RIGHT ANGLE	FAILED TO YieLd to incoming traffic at red light	HWY C/Kk	42467	MINOR INJURY
SEYMOUR	116.345	WB	REAR END	INATTENTIVE TO STOPPED TRAFFIC AHEAD AT SIGNAL	HWY C/KK	42569	PROPERTY DAMAGE ONLY
SEYMOUR	116.455	EB	AVOIDING	FOLLOWING TOO CLOSE		41238	PROPERTY DAMAGE ONLY
SEYMOUR	116.455	EB	PASSING	IMPROPER LANE CHANGE		41841	PROPERTY DAMAGE ONLY
SEYMOUR	116.561	WB	REAR END	Following too close at red light	HWY C/KK	42652	MINOR INJURY
SEYMOUR	116.823	WB	CROSS MEDIAN	ICY ROADWAY		42388	PROPERTY DAMAGE ONLY
SEYMOUR	116.836	EB	AVOIDING	HYDROLANED		42629	PROPERTY DAMAGE ONLY
SEYMOUR	116.936	EB	OUT OF CONTROL	HYDROPLANED		42794	MINOR INJURY
SEYMOUR	117.205	EB	OTHER	OBJECT IN ROADWAY		43055	PROPERTY DAMAGE ONLY
SEYMOUR	117.376	EB	REAR END	INATTENTIVE TO SLOWED TRAFFIC THAT HAD JUST ENTERED THE ROADWAY	OAK LAWN	42814	MINOR INJURY
SEYMOUR	117.78	EB	OUT OF CONTROL	ICY ROADWAY		41714	PROPERTY DAMAGE ONLY
SEYMOUR	118.091	EB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		41382	PROPERTY DAMAGE ONLY
SEYMOUR	118.494	EB	OUT OF CONTROL	HYDROPLANING		41013	PROPERTY DAMAGE ONLY
SEYMOUR	118.494	EB	LEFT TURN	IMPROPER LANE CHANGE		41480	MINOR INJURY
SEYMOUR	118.574	EB	PASSING	IMPROPER LANE CHANGE		42119	PROPERTY DAMAGE ONLY
SEYMOUR	118.624	EB	OUT OF CONTROL	ICY ROADWAY		43138	MINOR INJURY
SEYMOUR	118.794	EB	OUT OF CONTROL	HYDROPLANED		42866	MINOR INJURY
SEYMOUR	118.937	EB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		42874	PROPERTY DAMAGE ONLY
SEYMOUR	119.055	EB	CHANGING LANE	HIT RUMBLE STRIPS AND OVERCORRECTED		42029	PROPERTY DAMAGE ONLY
SEYMOUR	119.527	EB	OUT OF CONTROL	VEHICLE DEFECTS		41436	PROPERTY DAMAGE ONLY
SEYMOUR	119.994	EB	OTHER	VEHICLE DEFECTS		42868	PROPERTY DAMAGE ONLY
SEYMOUR	120.124	EB	OUT OF CONTROL	DISTRACTED DRIVER WATCHING APPROACHING VEHICLES AND NOT THE ROAD AHEAD		42905	PROPERTY DAMAGE ONLY
SEYMOUR	120.297	EB	OUT OF CONTROL	ICY ROADWAY		41715	PROPERTY DAMAGE ONLY
SEYMOUR	120.324	EB	OUT OF CONTROL	ALCOHOL		42774	disabling InJury
SEYMOUR	120.408	EB	REAR END	DISTRACTED DRIVER WAS LOOKING AT PHONE AND DIDN'T NOTICE THE MOTORCYCLE SLOWING TO MAKE A RIGHT TURN AHEAD	DEWBERRY	40999	FATAL
SEYMOUR	120.44	EB	OUT OF CONTROL	DRIVER WAS NOT WATCHING WHERE HE WAS DRIVING		42121	PROPERTY DAMAGE ONLY
SEYMOUR	120.442	EB	OUT OF CONTROL	ICY ROADWAY		43512	MINOR INJURY
SEYMOUR	120.624	EB	PASSING	DISTRACTED BY CELL PHONE		42641	MINOR INJURY
SEYMOUR	120.724	EB	PARKING OR PARKED CAR	ICY ROADWAY		41649	PROPERTY DAMAGE ONLY
SEYMOUR	120.724	EB	PASSING	ICY ROADWAY		41649	PROPERTY DAMAGE ONLY
SEYMOUR	120.724	EB	OUT OF CONTROL	ICY ROADWAY		42050	PROPERTY DAMAGE ONLY
SEYMOUR	120.724	EB	OUT OF CONTROL	ICY ROADWAY		42388	MINOR INJURY
SEYMOUR	120.724	EB	OUT OF CONTROL	ICY ROADWAY		42720	PROPERTY DAMAGE ONLY
SEYMOUR	120.724	EB	OUT OF CONTROL	SEMI FAILED TO NEGOTAATE CURVE AND RAN OFF THE ROADWAY ON THE RIGHT SIDE		42143	MINOR INJURY
SEYMOUR	120.724	EB	OUT OF CONTROL	ASLEEP		42271	MINOR INJURY

US 60 ROADWAY CRASHES - WEBSTER COUNTY (JAN 2012 - JUNE 2019)							
SECTION	Log MILE	DIRECTION	CRASH CLASS	factors	Intersection	Date	SEVERITY RATING
SEYMOUR	120.724	EB	OUT OF CONTROL	SEMI FAILED TO NEGOTAATE CURVE AND RAN OFF THE ROADWAY ON THE RIGHT SIIE		42521	PROPERTY DAMAGE ONLY
SEYMOUR	120.724	EB	OUT OF CONTROL	HYDROPLANED WHEN TAKING CURVE TOO FAST		42692	MINOR INJURY
SEYMOUR	120.724	EB	OUT OF CONTROL	NEGOTAATED A CURVE TOO FAST		42728	PROPERTY DAMAGE ONLY
SEYMOUR	120.755	EB	OUT OF CONTROL	SEMI FAILED TO NEGOTIATE CURVE AND RAN OFF THE ROADWAY ON THE RIGHT SIDE		42533	PROPERTY DAMAGE ONLY
SEYMOUR	120.759	EB	OUT OF CONTROL	ICY ROADWAY		43107	PROPERTY DAMAGE ONLY
SEYMOUR	120.765	EB	OUT OF CONTROL	ICY ROADWAY		43107	PROPERTY DAMAGE ONLY
SEYMOUR	120.779	EB	OUT OF CONTROL	RAN OFF THE ROAD ON THE RIGHT SIDE, NOT SPEED RELATED		42493	PROPERTY DAMAGE ONLY
SEYMOUR	120.824	EB	AVOIDING	TRAILER DETACHED FROM TRUCK AND STRUCK ANOTHER VEHICLE IN THE ROADWAY		41206	PROPERTY DAMAGE ONLY
SEYMOUR	120.824	EB	PARKING OR PARKED CAR	ICY ROADWAY		41603	MINOR INJURY
SEYMOUR	120.824	EB	OUT OF CONTROL	ICY ROADWAY		41603	PROPERTY DAMAGE ONLY
SEYMOUR	120.824	EB	OUT OF CONTROL	ICY ROADWAY		41621	MINOR INJURY
SEYMOUR	120.861	EB	OTHER	MEDICAL ISSUES		43354	DISABLING INJURY
SEYMOUR	120.924	EB	OUT OF CONTROL	UNABLE TO SEE ROADWAY STRIPIING DUE TO HEAVY RAIN		41491	MINOR INJURY
SEYMOUR	121.124	EB	OUT OF CONTROL	RAN OFF THE ROAD ON THE RIGHT SIIE, NO ADDITIONAL INFORMATION		41604	fatal
SEYMOUR	219.63	wB	OUT OF CONTROL	ASLEEP		41928	MINOR INJURY
SEYMOUR	219.812	WB	DEBRIS	OBJECT IN ROADWAY		43297	PROPERTY DAMAGE ONLY
SEYMOUR	220.08	wB	OTHER	OBJECT IN ROADWAY		42922	PROPERTY DAMAGE ONLY
SEYMOUR	220.155	WB	DOG	ANIMAL IN ROADWAY		43050	PROPERTY DAMAGE ONLY
SEYMOUR	220.613	WB	PASSING	IMPROPER LANE CHANGE		42644	PROPERTY DAMAGE ONLY
SEYMOUR	220.815	WB	FARM ANIMAL	ANIMAL IN ROADWAY		41321	PROPERTY DAMAGE ONLY
SEYMOUR	220.83	wB	OUT OF CONTROL	ICY ROADWAY		41974	MINOR INJURY
SEYMOUR	220.93	wB	REAR END	HEAVY FOG OBSTRUCTED VISION OF ALL DRIVERS		41148	disabling injury
SEYMOUR	221.209	wB	OUT OF CONTROL	ICY ROADWAY		42389	PROPERTY DAMAGE ONLY
SEYMOUR	221.338	wB	OUT OF CONTROL	ICY ROADWAY		43506	PROPERTY DAMAGE ONLY
SEYMOUR	221.43	WB	OUT OF CONTROL	MEDICAL ISSUES		41089	MINOR INJURY
SEYMOUR	221.43	wB	OUT OF CONTROL	ICY ROADWAY		41355	PROPERTY DAMAGE ONLY
SEYMOUR	221.574	WB	OTHER	OBJECT IN ROADWAY		40936	PROPERTY DAMAGE ONLY
SEYMOUR	221.605	WB	OUT OF CONTROL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	PEEWEE CROSSING	42709	FATAL
SEYMOUR	221.63	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSIING THE ROADWAY	PEEWEE CROSSING	40935	MINOR INJURY
SEYMOUR	221.634	wB	RIGHT ANGLE	OBJECT IN ROADWAY		42709	PROPERTY DAMAGE ONLY
SEYMOUR	221.7	wB	FARM ANIMAL	ANIMAL IN ROADWAY		43314	PROPERTY DAMAGE ONLY
SEYMOUR	221.767	WB	OUT OF CONTROL	ASLEEP		42156	MINOR INJURY
SEYMOUR	222.097	WB	OUT OF CONTROL	VEHICLE DEFECTS		43004	MINOR INJURY
SEYMOUR	222.234	WB	OTHER	OBJECT IN Roadway		42832	PROPERTY DAMAGE ONLY
SEYMOUR	222.33	wB	REAR END	HEAVY FOG OBSTRUCTED VISION OF ALL DRIVERS		42962	MINOR INJURY
SEYMOUR	222.608	WB	DEER	ANIMAL IN ROADWAY		43412	PROPERTY DAMAGE ONLY
SEYMOUR	223.234	WB	DEER	ANIMAL IN ROADWAY		43226	PROPERTY DAMAGE ONLY
SEYMOUR	223.234	WB	PASSING	AsLEEP		41279	PROPERTY DAMAGE ONLY
SEYMOUR	223.934	WB	OTHER	ANIMAL IN ROADWAY		41242	PROPERTY DAMAGE ONLY
SEYMOUR	223.944	WB	DOG	ANIMAL IN ROADWAY		41740	PROPERTY DAMAGE ONLY
SEYMOUR	224.022	WB	OUT OF CONTROL	AsLEEP		43354	PROPERTY DAMAGE ONLY
SEYMOUR	224.098	EB	REAR END	DISTRACTED DRIVER WAS MESSIING WITH THE SODA IN HIS CUP HOLDER	HWY C/Kk	42411	MINOR INJURY
SEYMOUR	224.127	WB	REAR END	DISTRACTED BY COFFEE	HWY C/Kk	43502	PROPERTY DAMAGE ONLY
SEYMOUR	224.134	WB	REAR END	HYDROPLANED - FOLLOWING TOO CLOSE		42337	PROPERTY DAMAGE ONLY
SEYMOUR	224.154	EB	REAR END	IMPROPER LANE CHANGE		42078	MINOR INJURY
SEYMOUR	224.177	WB	REAR END	AsLEEP		42918	PROPERTY DAMAGE ONLY
SEYMOUR	224.181	WB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	HWY C/KK	42913	MINOR INJURY
SEYMOUR	224.186	wB	REAR END	INATTENTIVE TO SLOWED TRAFFIC AHEAD APPROACHING SIGNALIZED INTERSECTION	HWY C/Kk	43434	MINOR INJURY
SEYMOUR	224.199	EB	REAR END	INATTENTVE TO STOPPED TRAFFIC AHEAD AT SIGNALZED INTERSECTION	HWY C/Kk	42228	PROPERTY DAMAGE ONLY
SEYMOUR	224.218	WB	REAR END	INATTENTIVE TO SLOWED TRAFFIC AHEAD AT SIGNAL	HWY C/Kk	43460	PROPERTY DAMAGE ONLY
SEYMOUR	224.221	WB	rear end	SLID ON WET ROADWAY FROM FOLLOWING TOO CLOSE AND PUSHED THE VEHICLE AHEAD INTO THE SIGNALIZED INTERSECTION TO STRIKE ANOTHER VEHICLE	HWY C/KK	43382	PROPERTY DAMAGE ONLY
SEYMOUR	224.222	WB	ReAR End	THOUGHT TRAFFIC WAS MOVING AT SIGNAL WHEN IT WASN'T	HWY C/KK	41771	PROPERTY DAMAGE ONLY
SEYMOUR	224.223	WB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	HWY C/KK	40979	MINOR INJURY
SEYMOUR	224.224	WB	REAR END	ALCOHOL	HWY C/Kk	41542	MINOR INJURY
SEYMOUR	224.228	WB	REAR END	INATTENTIVE TO STOPPED TRAFFIC AHEAD AT SIGNAL	HWY C/Kk	40930	PROPERTY DAMAGE ONLY
SEYMOUR	224.228	wB	REAR END	INATTENTVE TO STOPPED TRAFFIC AHEAD AT SIGNAL	HWY C/KK	40930	MINOR INJURY
SEYMOUR	224.228	WB	REAR END	SWERVING AFTER BEING UNABLE TO STOP AT RED LIGHT	HWY C/Kk	40930	PROPERTY DAMAGE ONLY
SEYMOUR	224.228	WB	REAR END	THOUGHT TRAFFIC WAS MOVING AT SIGNAL WHEN IT WASN'T	HWY C/Kk	43388	PROPERTY DAMAGE ONLY
SEYMOUR	224.228	WB	PASSING	SWERVED TO AVOID REAR END CRASH RESULTING IN SIDESWIPE AT THE SIGNAL	HWY C/Kk	43502	PROPERTY DAMAGE ONLY
SEYMOUR	224.231	EB	REAR END	DISTRACTED BY CELL PHONE	HWY C/Kk	43331	MINOR INJURY
SEYMOUR	224.232	WB	REAR END	HYDROPLANING, CHAIN REACTION REAR END CRASHES AT SIGNAL	HWY C/Kk	42066	MINOR INJURY
SEYMOUR	224.232	WB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	HWY C/Kk	41262	PROPERTY DAMAGE ONLY
SEYMOUR	224.234	wB	TURN RIGHT ANGLE COLL	FAILED TO YIELD TO INCOMING TRAFFIC AT SIGNAL AHEAD	HWY C/KK	42844	PROPERTY DAMAGE ONLY
SEYMOUR	224.234	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC AT RED LIGHT	HWY C/Kk	43109	MINOR INJURY
SEYMOUR	224.234	WB	RIGHT ANGLE	FALLED TO YIELD TO INCOMING TRAFFIC AT RED LIGHT	HWY C/Kk	41284	PROPERTY DAMAGE ONLY
SEYMOUR	224.234	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC AT RED LIGHT	HWY C/Kk	41727	disabling injury
SEYMOUR	224.234	wB	U-TURN	IMPROPER U-TURN, COLLIDED WITH ANOTHER VEHILLE UPON RE-ENTERING THE ROADWAY	HWY C/Kk	42854	MINOR INJURY
SEYMOUR	224.234	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC AT SIGNAL AHEAD	HWY C/Kk	43192	MINOR INJURY
SEYMOUR	224.243	WB	RIGHT ANGLE	FAlLed to Yield to incoming traffic At red light	HWY C/KK	42066	PROPERTY DAMAGE ONLY
SEYMOUR	224.266	WB	OTHER	OBJECT IN ROADWAY		41097	PROPERTY DAMAGE ONLY
SEYMOUR	224.333	EB	OUT OF CONTROL	MESSING WITH THE VEHICLE FLOORBOARDS AND RAN OFF THE ROAD ON THE RIGHT SIDE, OVERCORRECTED AND OVERTURNED UPON RETURNING TO ROADWAY		42191	PROPERTY DAMAGE ONLY
SEYMOUR	224.346	EB	Rear end	drugs	HWY C/Kk	42319	PROPERTY DAMAGE ONLY
SEYMOUR	224.349	WB	REAR END	INATTENTIVE TO SLOWED TRAFFIC AHEAD THAT HAD RECENTLY ENTERED THE ROADWAY	HWY C/Kk	41587	PROPERTY DAMAGE ONLY
SEYMOUR	224.516	EB	PASSING	IMPROPER LANE CHANGE		42132	PROPERTY DAMAGE ONLY
SEYMOUR	224.564	EB	PASSING	IMPROPER LANE CHANGE		42483	PROPERTY DAMAGE ONLY
SEYMOUR	224.778	WB	OUT OF CONTROL	HYDROPLANED		42195	MINOR INJURY
SEYMOUR	224.931	wB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	CLINTON	42629	PROPERTY DAMAGE ONLY
SEYMOUR	224.94	wB	REAR END	ANIMAL IN ROADWAY	CLINTON	42156	PROPERTY DAMAGE ONLY
SEYMOUR	224.987	wB	CHANGING LANE	VEHICLE DEFECTS		43513	PROPERTY DAMAGE ONLY
SEYMOUR	225.381	EB	REAR END	drugs		42997	PROPERTY DAMAGE ONLY
SEYMOUR	225.467	EB	OUT OF CONTROL	ICY ROADWAY		41974	MINOR INJURY
SEYMOUR	225.481	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	SKYLINE	43305	MINOR INJURY
SEYMOUR	225.481	wB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	SKYLINE	43000	MINOR INJURY
SEYMOUR	225.481	WB	RIGHT ANGLE	FAILED TO YIELD TO INCOMING TRAFFIC WHEN CROSSING THE ROADWAY	SKYLINE	43010	DISABLING INJURY
SEYMOUR	225.487	WB	TURN RIGHT ANGLE COLL	FAILED TO YIELD TO INCOMING TRAFFIC WHEN MAKING A LEFT TURN ONTO US60	SKYLINE	41865	FATAL
SEYMOUR	225.573	wB	PEDESTRIAN	PEDESTRIAN WAS CROSSING THE ROADWAY AND WAS STRUCK BY AN INCOMING VEHICLE	SKYLINE	41496	MINOR INJURY
SEYMOUR	226.039	WB	OUT OF CONTROL	HYOROPLANED		42195	PROPERTY DAMAGE ONLY
SEYMOUR	226.058	WB	OUT OF CONTROL	VEHICLE DEFECTS		42657	PROPERTY DAMAGE ONLY
SEYMOUR	226.139	wB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	CLINTON	42669	PROPERTY DAMAGE ONLY
SEYMOUR	226.144	WB	PASSING	ROAD RAGE INCIDENT		43075	PROPERTY DAMAGE ONLY
SEYMOUR	226.176	wB	REAR END	REAR END CRASH, NO ADDITIONAL INFORMATION GIVEN	CLINTON	42333	PROPERTY DAMAGE ONLY
SEYMOUR	226.182	wB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	CLINTON	42871	PROPERTY DAMAGE ONLY
SEYMOUR	226.193	wB	REAR END	HYDROPLANED ATTEMPTING TO STOP AFTER FOLLOWING TOO CLOSE AT RED LIGHT	CLINTON	43089	PROPERTY DAMAGE ONLY
SEYMOUR	226.223	wB	REAR END	REAR END CRASH, NO ADDITIONAL INFORMATION GIVEN	CLINTON	42466	PROPERTY DAMAGE ONLY
SEYMOUR	226.225	WB	REAR END	ICY ROADWAY	CLINTON	43114	MINOR INJURY

US 60 ROADWAY CRASHES - WEBSTER COUNTY (JAN 2012 - JUNE 2019)							
SECTION	Log mile	DIRECTION	CRASH CLASS	FACTORS	INTERSECTION	Date	SEVERITY RATING
SEYMOUR	226.225	WB	PASSING	INATTENTIVE TO STOPPED TRAFFIC AT SIGNAL AHEAD	CLINTON	41942	PROPERTY DAMAGE ONLY
SEYMOUR	226.228	WB	REAR END	DISTRACTED DRIVER WAS FIGHTING WITH PASSENGER AND STRUCK ANOTHER VEHICLE	CLINTON	42216	PROPERTY DAMAGE ONLY
SEYMOUR	226.23	WB	REAR END	ICY ROADWAY	CLINTON	41715	MINOR INJURY
SEYMOUR	226.233	WB	OUT OF CONTROL	ICY ROADWAY	CLINTON	41330	PROPERTY DAMAGE ONLY
SEYMOUR	226.235	WB	PASSING	FOLLOWING TOO CLOSE AT RED LIGHT	CLINTON	40959	PROPERTY DAMAGE ONLY
SEYMOUR	226.239	WB	OUT OF CONTROL	ICY ROADWAY		43506	PROPERTY DAMAGE ONLY
SEYMOUR	226.239	WB	PASSING	ROAD RAGE INCIDENT		41561	PROPERTY DAMAGE ONLY
SEYMOUR	226.245	WB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	CLINTON	41229	PROPERTY DAMAGE ONLY
SEYMOUR	226.267	WB	REAR END	IMPROPERLY PASSING TO ALLOW MORE ROOM FOR HORSE AND BUGGY ON SHOULDER		43106	PROPERTY DAMAGE ONLY
SEYMOUR	226.289	WB	REAR END	FOLLOWING TOO CLOSE AT RED LIGHT	CLINTON	40958	MINOR INJURY
SEYMOUR	226.32	WB	PASSING	SIDESWIPED IN AN ATTEMPT TO MOVE ASIDE AND GIVE A HORSE AND BUGGY ON THE SHOULDER SOME SAFETY SPACE APPROACHING INTERSECTION	CLINTON	42362	PROPERTY DAMAGE ONLY
SEYMOUR	226.511	WB	REAR END	ALCOHOL	CLINTON	41069	PROPERTY DAMAGE ONLY
SEYMOUR	226.552	WB	CHANGING LANE	ALCOHOL		41634	PROPERTY DAMAGE ONLY
SEYMOUR	226.557	WB	OUT OF CONTROL	ICY ROADWAY		42053	PROPERTY DAMAGE ONLY
*SEVERAL ROADWAY CRASHES WERE REMOVED DUE TO DUPLICATION OR OCCURRENCE PRIOR TO INTERSECTION SAFETY IMPROVEMENT.							

2019 US 60 TRAFFIC COUNTS - WEBSTER COUNTY													
INTERSECTION	PEAK HOUR	DIRECTION											
		EASTBOUND			WESTBOUND			NORTHBOUND			SOUTHBOUND		
		L	T	R	L	T	R	L	T	R	L	T	R
INDUSTRY ROAD	AM	11	497	5	11	1002	5	23	1	35	0	4	3
	PM	17	1096	18	2	807	4	7	8	21	2	1	12
WHITE OAK ROAD	AM	14	471	19	2	962	0	26	3	2	3	1	36
	PM	25	1076	17	1	782	0	18	3	9	1	3	18
CENTER ROAD	AM	2	481	2	20	949	18	13	2	9	11	3	0
	PM	3	1040	5	9	765	27	14	2	22	22	3	0
POWER LINE ROAD	AM	0	0	0	1	949	0	51	10	0	0	0	0
	PM	0	0	0	3	777	1	25	4	0	0	2	9
PORTER CROSSING ROAD	AM	0	0	0	0	940	1	5	0	0	0	2	7
	PM	0	0	0	0	766	0	2	3	0	0	2	2
PORTER LOOP	AM	0	458	1	0	932	1	2	0	1	1	0	0
	PM	0	1047	4	1	758	0	1	1	2	0	0	0
STATE HIGHWAY U	AM	6	430	14	7	844	1	71	0	37	2	0	18
	PM	9	941	62	18	654	5	18	0	21	1	1	2
ROAD 445	AM	29	453	2	1	817	0	3	1	4	2	0	41
	PM	42	945	2	4	695	3	4	0	4	0	0	38
BURKS STREET	AM	44	492	4	2	547	4	2	2	0	7	0	51
	PM	92	841	1	3	638	11	1	4	2	10	5	77
EAST MAIN STREET	AM	0	56	0	0	4	0	0	0	0	0	0	85
	PM	0	82	0	0	12	0	0	82	0	0	0	32
STATE HIGHWAY Z	AM	2	434	18	3	729	0	82	0	8	0	0	0
	PM	1	879	50	10	668	1	32	0	7	1	0	1
WINDSWEPT DRIVE	AM	0	433	0	0	711	0	0	0	0	0	0	0
	PM	0	880	0	0	681	2	0	0	0	0	0	2
BLUEBIRD LANE	AM	0	444	0	0	718	0	0	0	1	0	0	0
	PM	0	896	3	0	644	0	0	0	2	0	0	0
HUMMINGBIRD LANE	AM	0	442	4	0	707	0	19	0	1	-	0	0
	PM	2	869	15	0	685	0	7	0	0	0	0	0
HONOR CAMP LANE	AM	2	372	30	25	668	1	10	0	7	3	0	4
	PM	2	860	5	5	587	3	36	0	31	2	0	0
GREEN BRIER DRIVE	AM	0	361	0	0	702	0	0	0	1	0	0	0
	PM	0	897	0	0	569	0	0	0	3	0	0	0
STATE HIGHWAY A	AM	36	325	0	1	625	82	0	0	0	68	0	75
	PM	68	841	0	0	548	75	0	0	0	73	0	41
SOUTH MAIN STREET	AM	0	376	14	6	662	6	40	4	15	3	2	11
	PM	8	834	39	15	623	5	18	2	20	3	1	2
STATE HIGHWAY O	AM	14	395	0	1	630	7	0	0	0	31		29
	PM	30	828	0	1	617	23	0	0	0	19	0	25
COUNTY ROAD 320	AM	1	423	0	1	635	4	4	6	1	0	1	7
	PM	1	850	5	2	635	1	2	0	4	1	1	3
BERRY ROAD	AM	0	0	0	0	638	8	0	0	0	0	0	9
	PM	0	0	0	0	628	9	0	0	0	0	0	7
KILLDEER/SORT ROAD	AM	5	422	2	4	645	3	0	0	2	2	3	8
	PM	11	858	2	5	611	12	1	1	4	11	2	10
COUNTY ROAD 320B	AM	0	423	0	0	612	13	0	0	2	5	0	3
	PM	1	791	0	3	622	11	2	1	5	9	0	4
WEST CLINTON AVENUE	AM	8	354	120	14	469	10	112	7	32	7	10	6
	PM	12	588	239	14	509	11	113	4	26	10	17	6
SKYLINE ROAD	AM	17	352	9	18	497	0	17	18	18	4	21	18
	PM	41	589	11	21	485	1	29	58	58	2	27	22
LYNCH DRIVE	AM	0	373	0	0	519	1	0	0	0	1	0	1
	PM	1	656	0	0	511	1	0	0	0	0	0	1
STATE HIGHWAY K	AM	28	302	35	28	400	22	34	62	41	14	51	33
	PM	32	529	65	49	414	28	39	68	56	28	66	32
OAK LAWN ROAD	AM	0	352	2	36	492	0	2	0	12	0	2	0
	PM	1	612	0	54	487	0	2	0	29	0	0	0
PEWEE CROSSING ROAD	AM	8	384	4	2	497	7	5	1	2	7	1	14
	PM	8	642	8	2	534	6	8	1	1	2	1	17
MINERAL ROAD	AM	0	355	2	0	355	2	1	0	0	1	0	0
	PM	0	614	1	0	529	1	1	0	0	0	0	3
ROAD 218/DEWBERRY ROAD	AM	0	384	3	2	498	0	0	0	1	0	0	0
	PM	0	625	3	1	535	0	3	0	1	0	0	0
PRIVATE DRIVEWAY/CHURCH	AM	0	382	0	0	493	0	0	0	0	0	0	0
	PM	0	629	0	0	522	0	0	0	0	0	0	1

2039 PROJECTED US 60 TRAFFIC VOLUMES - WEBSTER COUNTY (NO-BUILD)													
INTERSECTION	PEAK HOUR	DIRECTION											
		EASTBOUND			WESTBOUND			NORTHBOUND			SOUTHBOUND		
		L	T	R	L	T	R	L	T	R	L	T	R
Industry road	AM	13	606	6	13	1248	6	28	1	43	0	5	4
	PM	21	1337	22	2	998	5	9	10	26	2	1	15
WHITE OAK ROAD	AM	17	609	23	2	1192	0	32	4	2	4	1	44
	PM	31	1313	21	1	962	0	22	4	11	1	4	22
CENTER ROAD	AM	2	610	2	24	1179	22	16	2	11	13	4	0
	PM	4	1315	6	11	946	33	17	2	27	27	4	0
POWER LINE ROAD	AM	12	610	12	1	1163	0	62	12	0	0	0	0
	PM	12	1345	12	4	948	1	31	5	0	0	2	11
PORTER CROSSING ROAD	AM	0	604	6	0	1149	1	6	0	0	0	2	9
	PM	12	1326	6	0	935	0	2	4	0	0	2	2
PORTER LOOP	AM	0	603	1	0	1148	1	2	0	1	1	0	0
	PM	0	1321	5	1	925	0	1	1	2	0	0	0
STATE HIGHWAY U	AM	7	581	17	9	1041	1	87	0	45	2	0	22
	PM	11	1241	76	22	888	6	22	0	26	1	1	2
ROAD 445	AM	35	591	2	1	997	0	4	1	5	2	0	50
	PM	51	1214	2	5	865	4	5	0	5	0	0	46
BURKS STREET	AM	49	544	5	2	933	5	2	2	0	9	0	62
	PM	118	1099	1	4	797	13	1	5	2	12	6	94
EAST MAIN STREET	AM	0	512	12	0	941	104	0	0	68	0	0	0
	PM	0	1062	24	0	826	39	0	0	100	0	0	0
STATE HIGHWAY Z	AM	2	530	22	4	916	0	100	0	10	0	0	0
	PM	1	1073	61	12	831	1	39	0	9	1	0	1
WINDSWEPT DRIVE	AM	0	539	0	0	893	0	0	0	0	0	0	0
	PM	0	1082	0	0	842	2	0	0	0	0	0	2
BLUEBIRD LANE	AM	0	542	0	0	893	0	0	0	1	0	0	0
	PM	0	1079	4	0	844	0	0	0	2	0	0	0
HUMMINGBIRD LANE	AM	0	539	5	0	870	0	23	0	1	0	0	0
	PM	2	1060	18	0	836	0	9	0	0	0	0	0
HONOR CAMP LANE	AM	2	498	40	35	853	1	12	0	9	4	0	5
	PM	2	1052	6	6	731	4	44	0	38	2	0	0
GREEN BRIER DRIVE	AM	0	510	0	0	890	0	0	0	1	0	0	0
	PM	0	1092	0	0	741	0	0	0	4	0	0	0
STATE HIGHWAY A	AM	49	462	0	1	794	100	0	0	0	83	0	95
	PM	83	1026	0	0	691	94	0	0	0	89	0	50
SOUTH MAIN STREET	AM	0	526	20	7	833	7	49	5	18	4	2	13
	PM	10	1058	48	18	760	6	22	2	24	4	1	2
STATE HIGHWAY O	AM	17	531	0	1	813	9	0	0	0	38	0	35
	PM	37	1049	0	1	753	28	0	0	0	23	0	31
COUNTY ROAD 320	AM	1	567	0	1	809	5	5	7	1	0	1	9
	PM	1	1065	6	2	775	1	2	0	5	1	1	4
BERRY ROAD	AM	0	569	0	0	778	10	0	0	0	0	0	11
	PM	0	1071	0	0	766	11	0	0	0	0	0	9
KILLDEER/SORT ROAD	AM	6	560	2	5	787	4	0	0	2	2	4	10
	PM	13	1055	2	6	746	15	1	1	5	13	2	12
COUNTY ROAD 320B	AM	0	565	0	0	793	16	0	0	2	6	0	4
	PM	1	1073	0	4	759	13	2	1	6	11	0	5
WEST CLINTON AVENUE	AM	10	422	142	17	620	12	182	9	39	9	12	7
	PM	15	764	311	17	630	13	138	5	32	12	21	7
SKYLINE ROAD	AM	21	438	11	22	606	0	21	22	22	5	26	22
	PM	50	744	13	26	598	1	35	71	71	2	33	27
LYNCH DRIVE	AM	0	465	0	0	633	1	0	0	0	1	0	1
	PM	1	816	0	0	624	1	0	0	0	0	0	1
STATE HIGHWAY K	AM	34	389	43	34	542	27	41	76	50	17	62	40
	PM	41	689	85	63	517	35	48	83	68	34	81	39
OAK LAWN ROAD	AM	0	454	2	44	600	0	2	0	15	0	2	0
	PM	1	791	0	68	614	0	2	0	35	0	0	0
PEWEE CROSSING ROAD	AM	10	469	5	2	606	9	6	1	2	9	1	17
	PM	10	807	10	2	652	7	10	1	1	2	1	21
MINERAL ROAD	AM	0	477	2	0	608	2	1	0	0	1	0	0
	PM	0	809	1	0	655	1	1	0	0	0	0	4
ROAD 218/DEWBERRY ROAD	AM	0	475	4	2	608	0	0	0	1	0	0	0
	PM	0	805	4	1	653	0	4	0	1	0	0	0
PRIVATE DRIVEWAY/CHURCH	AM	0	476	0	0	602	0	0	0	0	0	0	0
	PM	0	807	0	0	637	0	0	0	0	0	0	1

2039 PROPOSED US 60 TRAFFIC VOLUMES - WEBSTER COUNTY (PROPOSED)													
INTERCHANGE	PEAK HOUR	DIRECTION											
		EASTBOUND			WESTBOUND			NORTHBOUND			SOUTHBOUND		
		L	T	R	L	T	R	L	T	R	L	T	R
WHITE OAK ROAD	AM	45	537	38	41	1143	29	110	20	56	17	12	56
	PM	79	1242	39	18	894	39	70	21	63	31	13	50
STATE HIGHWAY U	AM	7	576	27	9	1093	2	99	0	46	4	0	22
	PM	11	1236	89	23	918	6	31	5	28	1	1	2
BURKS STREET	AM	84	537	5	4	989	5	2	4	5	11	0	112
	PM	170	1095	1	9	806	17	1	5	7	12	6	140
STATE HIGHWAY Z	AM	2	471	79	4	857	104	135	0	11	68	0	5
	PM	4	997	113	12	737	43	92	0	11	101	0	4
STATE HIGHWAY A	AM	70	462	20	45	737	117	54	5	29	128	2	173
	PM	133	923	54	26	659	132	26	2	66	118	1	107
KILLDEER/SORT ROAD	AM	0	619	0	0	899	0	0	7	0	0	5	0
	PM	0	1107	0	0	817	0	0	1	0	0	4	0
WEST CLINTON AVENUE	AM	37	428	155	23	662	46	203	24	45	17	30	34
	PM	81	700	327	29	601	54	176	56	48	38	44	40
STATE HIGHWAY K	AM	34	411	45	100	647	28	44	82	87	23	72	40
	PM	43	657	85	157	595	38	50	104	174	37	88	39
PEWEE CROSSING ROAD	AM	10	500	11	5	751	11	7	1	4	10	1	17
	PM	10	844	15	4	750	9	15	1	2	2	1	26

MoDOT - BNSF RAILROAD (THAYER LINE FROM M.P. 218 TO M.P. 242) WEBSTER COUNTY, MO AT-GRADE CROSSING EXPOSURE INDEX SUMMARY																
StREET		US DOT \#	RR M.P.	\# DAILY TRAIN MOVEMENTS (T)	MAX TRAIN SPEED (Ts)	ADT (v)	VEHICLE SPEED (Vs)	TRAFFIC INDEX (TI)	TOTAL \% OBSTRUCTION (PO)	SIGHT DIST. FACTOR	EXPOSURE INDEX (EI)	Protection Factor (PF)	Existing Adjusted Exposure Index (AEI)	Proposed Improvement N/A	Proposed AEI	AEI Change
	CHERRY Street	667619N	218.92	closed											N/A	248.3
	FRont street (RTE B)	667620H	219.05	27	50	2319	30	9391.95	0.0	0.00	9391.95	0.01	93.92		93.92	
	white oak road	6679622W	220.6	27	50	90	45	546.75	0.0	0.00	546.75	0.01	$5.47{ }^{283.44}$	-	5.47	
	Porter crossing road	667623D	222.12	27	50	89	50	600.75	0.0	0.00	600.75	1.25	750.94	Lights \& Gates	6.01	
$\begin{aligned} & \text { ㄹ } \\ & \frac{5}{5} \\ & \text { 흔 } \end{aligned}$	DUTCH HILL Road	667628M	223.72	27	50	52	50	351	0.0	0.00	351	0.01	3.51	Closure	0	-90.6
	BALLPARK ROAD (RED OAK)	6676290	223.92	27	50	279	50	1883.25	0.0	0.00	1883	0.25	470.81	Closure	0	
	IRON MOUNTAIN RoAd	${ }^{667633 J}$	225.41	27	50	830	50	5602.5	0.0	0.00	5603	0.01	56.03	Closure	0	
	Center street	667635x	226.5	27	50	384	50	2592	0.0	0.00	2592	0.01	25.92	.	25.92	
	CARPENTER STREET (FR 345B)	${ }^{6676387}$	227.24	27	50	86	50	580.5	0.0	0.00	581	0.01	5.81	Closure	0	
	HIGHWAYZ	$667640 \cup$	227.66	27	50	911	55	6764.175	0.0	0.00	6764	0.01	$6^{67.64} 93.14$	Closure	2.6	
	blue bird lane	667641B	228.13	27	50	10	50	67.5	0.0	0.00	68	1.25	84.38	Closure	0	
	hummingbird lane	${ }^{667642 H}$	228.64	27	50	33	50	222.75	0.0	0.00	223	1.25	278.44	Closure	0	
	tand r Road	667644w	229.17	27	50	263	50	1775.25	0.0	0.00	1775	0.01	17.75	Closure	0	
	HONOR CAMP LANE (FOREST GROVE DR)	667645D	229.73	27	50	212	50	1431	0.0	0.00	1431	0.01	14.31	Closure	0	
	digains main strett (RTE NN)	667650A	231.51	27	50	626	55	4648.05	0.0	0.00	4648	0.01	46.48	Closure	0	221.6
	RASPBERRY ROAD	${ }^{667651 G}$	232.51	closed										N/A	N/A	
	Box SCHOOL LOOP	667652N	233.03	27	50	72	50	486	0.0	0.00	486	1.25	607.50	Closure	0.0	
	SHort road	667653 V	233.75	27	50	71	50	479.25	0.0	0.00	479	0.01	4.79	Closure	0	
	BISON ROAD (BOX SCHOOL LP)	667654 C	234.75	27	50	27	50	182.25	0.0	0.00	182	1.25	227.81	Closure	0	
	DIVISION STREET	667656R	236.43	CLOSED										N/A	N/A	1467.0
	COMMERCIAL STREET	$667657 \times$	236.59	27	50	2631	25	8879.625	0.0	0.00	8880	0.01	88.80	-	88.80	
	MAIN STREET	667659 L	236.69	27	50	930	25	3138.75	0.0	0.00	3139	0.01	31.39	-	31.39	
	Charles street	667660%	236.88	27	50	1006	25	3395.25	0.0	0.00	3395	0.01	33.95	-	33.95	
	oak lawn road	667661M	238.22	27	50	1048	50	7074	0.0	0.00	7074	1.25	$8842.50{ }^{1499.15}$	Lights \& Gates	70.74	
	Peewee crossing road	${ }^{667664 H}$	239.95	27	50	152	50	1026	0.2	212.59	1239	0.01	12.39	Closure	0	
	MINERAL RoAD	667665P	240.51	27	50	40	50	270	0.0	0.00	270	1.25	337.50	Closure	0	
	dewberry road	667667 D	${ }^{241.38}$	27	50	136	50	918	0.0	0.00	918	1.25	1147.50	Closure	0	
AVERAGE AEI													2097.4	69.8		2027.5

Traffic Index Factor Formula (TI) = (T)(Ts)(V)V(V)/(0.00001)
Total Percent Sight Distance obstructions Formula (PO) $=$ (Sight Distance Obstructions/Required Sight Distance)
Sight Distance Factor Formula = Total Percent Sight Distance Obstructions (PO) * Traffic Index Factor (Ti)
Exposure Index Formula (EI) = Traffic Index Factor (TT) * Sight Distance Factor
Adjusted Exposure Index Formula ($A E I)=$ Exposure Index * Protection Factor
Protection Factor $=$ Type of Protection (Passive Warning Devices $=1.25$, Railroad Flashing Lights $=0.25$, and Gates with Railroad Flashing Lights $=0.01$) ***Protection Factors are derived from Connecticut's Hazard Rating Formula
*Note: All Roadways considered to be at a North/ South Orientation

US 60 CORRIDOR STUDY - BNSF THAYER-NORTH LINE (M.P. 219.00-M.P. 242.00) WEBSTER COUNTY, MO BUILD CONDITION CRASH REDUCTION NUMBERS											
	STREET	US DOT \#	RR M.P.	EXISTING CRASH PREDICTION	ESTIMATED CRASHES OVER 25 YEAR PERIOD	$\begin{aligned} & \text { PROPOSED } \\ & \text { CRASH } \\ & \text { PREDICTION } \end{aligned}$	ESTIMATED CRASHES OVER 25 YEAR PERIOD (BUILD CONDITION)	TOTAL CRASH REDUCTION	FATAL CRASH REDUCTION	INJURY CRASH REDUCTION	$\begin{aligned} & \text { NON - INJURY } \\ & \text { CRASH } \\ & \text { REDUCTION } \\ & \hline \end{aligned}$
岂	FRONT STREET (RTE B)	667620H	219.05	0.0121	0.30	0.012	0.303	-	-	-	-
号	WHITE OAK ROAD	6679622W	220.6	0.0842	2.11	0.084	2.106	-	-	-	-
0	PORTER CROSSING ROAD	667623D	222.12	0.0568	1.42	0.009	0.233	1.1887	0.0012	0.4052	0.7823
$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	DUTCH HILL ROAD	667628M	223.72	0.0059	0.15	0.0	0.0	0.1475	0.0002	0.0503	0.097
	BALLPARK ROAD (RED OAK)	667629 U	223.92	0.0349	0.87	0.0	0.0	0.8714	0.0013	0.2744	0.5958
	IRON MOUNTAIN ROAD	667633J	225.41	0.0669	1.67	0.0	0.0	1.6716	0.0024	0.5263	1.1429
	CENTER STREET	667635X	226.5	0.0827	2.07	0.083	2.068	-	-	-	-
	CARPENTER STREET (FR 345B)	667638 T	227.24	0.0066	0.17	0.0	0.0	0.1653	0.0002	0.0497	0.1154
	HIGHWAY Z	$667640 \cup$	227.66	0.0208	0.52	0.0	0.0	0.52	0.0006	0.1564	0.363
	BLUE BIRD LANE	667641B	228.13	0.0093	0.23	0.0	0.0	0.2325	0.0002	0.0793	0.153
	HUMMINGBIRD LANE	667642H	228.64	0.0115	0.29	0.0	0.0	0.2884	0.0003	0.0983	0.1898
	TANDY ROAD	667644W	229.17	0.0448	1.12	0.0	0.0	1.1206	0.0016	0.3818	0.7371
	HONOR CAMP LANE (FOREST GROVE DR)	667645D	229.73	0.0080	0.20	0.0	0.0	0.2	0.0003	0.0682	0.1316
$\begin{aligned} & \text { n } \\ & \frac{1}{5} \\ & \text { U } \end{aligned}$	DIGGINS MAIN STREET (RTE NN)	667650A	231.51	0.0285	0.71	0.0	0.0	0.713	0.001	0.2245	0.4875
	BOX SCHOOL LOOP	667652N	233.03	0.0563	1.41	0.0	0.0	1.4072	0.0014	0.4433	0.9625
	SHORT ROAD	667653 V	233.75	0.0944	2.36	0.0	0.0	2.3589	0.0034	0.7758	1.5798
	BISON ROAD (BOX SCHOOL LP)	667654C	234.75	0.0336	0.84	0.0	0.0	0.8402	0.0008	0.2643	0.5751
	COMMERCIAL STREET	667657X	236.59	0.0318	0.80	0.032	0.796	-	-	-	-
	MAIN STREET	667659L	236.69	0.0669	1.67	0.067	1.672	-	-	-	-
	Charles street	667660F	236.88	0.0107	0.27	0.011	0.266	-	-	-	-
	OAK LAWN ROAD	667661M	238.22	0.1053	2.63	0.076	1.903	0.7302	0.0007	0.2229	0.5066
	PEEWEE CROSSING ROAD	667664H	239.95	0.0641	1.60	0.006	0.153	1.4509	0.0021	0.4428	1.0061
	MINERAL ROAD	667665P	240.51	0.0144	0.36	0.0	0.0	0.3601	0.0004	0.1099	0.2498
	DEWBERRY ROAD	667667D	241.38	0.0579	1.45	0.0	0.0	1.4482	0.0014	0.4765	0.9703
TOTAL								15.71	0.02	5.05	10.65

APPENDIXC

Corridor Improvement Maps

Tin en
4173

$1-\sqrt{60}$

Proposed Cost Summary \&
 Benefit-Cost Analysis

NOTES:

1. The Opinion of Probable Cost Assumes a Reasonable Schedule for Construction with No Additional Contingencies Estimated for Acceleration.
2. The Opinion of Probable Cost Does not Include any Additional Contingencies for Escalation of Steel and Fuel Costs.

NOTES

1. The Opinion of Probable Cost Assumes a Reasonable Schedule for Construction with No Additional Contingencies Estimated for Acceleration.
2. The Opinion of Probable Cost Does not Include any Additional Contingencies for Escalation of Steel and Fuel Costs.

WEBSTER COUNTY, MO US 60 CORRIDOR STUDY March 2, 2020 Diggins - Cost Alternate \#1A		
	TOTAL	
DEMOLITION	\$	263,230
Existing Pavement Removal	\$	263,230
STRUCTURAL	\$	3,965,000
Structure	\$	3,965,000
ROADWAY	\$	13,422,723
Excavation	\$	1,388,000
Embankment	\$	1,830,000
Aggregate Base (4")	\$	1,310,303
Full Depth Pavement (8")	\$	7,027,150
Drainage Pipe	\$	55,250
Guardrail, Type A	\$	29,400
Pavement Marking	\$	23,400
Seeding \& Landscaping	\$	26,750
Erosion Control	\$	26,000
Signing	\$	48,250
New Drive	\$	84,555
Gravel Road Surface	\$	1,573,665
ENVIRONMENTAL MITIGATION	\$	-
Hazardous Waste Disposal		N/A
RAILROAD CROSSINGS	\$	150,000
BNSF Track Removal	\$	150,000
BNSF Track Construction		N/A
Aggregate Ballast		N/A
BNSF RR Flaggers		N/A
BNSF RR Insurance		N/A
BNSF RR At-Grade Signal Equipment		N/A
BNSF RR Communication Equipment		N/A
BNSF RR At-Grade Removal		N/A
MOBILIZATION	\$	344,899
Assume 4\% for Mobilization	\$	344,899
MAINTENANCE OF TRAFFIC	\$	50,000
Assume Staged Constuction	\$	50,000
TOTAL CONSTRUCTION OPINION OF PROBABLE COST (2019 DOLLARS)	\$	18,195,851
PRELIMINARY DESIGN LEVEL CONTINGENCY (20\%)	\$	3,639,170
SUB-TOTAL	\$	21,835,021
INFLATION (3\% PER YEAR) ASSUMING CONSTRUCTION IN 2029	\$	6,550,506
TOTAL CONSTRUCTION OPINION OF PROBABLE COST (2029 DOLLARS)	\$	28,385,528
UTILITIES	\$	350,000
Utilitiy Relocation	\$	350,000
LAND ACQUISITION	\$	304,850
ROW	\$	304,850
ENGINEERING	\$	2,183,502
Phase 2 Design Phase Engineering	\$	2,183,502
SUB-TOTAL TOTAL PROGRAM BUDGET (2029 DOLLARS)	\$	$\begin{array}{r} 2,838,352 \\ 31,223,880 \\ \hline \end{array}$

NOTES:

1. The Opinion of Probable Cost Assumes a Reasonable Schedule for Construction with No Additional Contingencies Estimated for Acceleration.
2. The Opinion of Probable Cost Does not Include any Additional Contingencies for Escalation of Steel and Fuel Costs.

US Highway 60 Corridor Study Webster County, MO

Benefit-Cost Analysis

COUNCIL OF GOVERNMENTS

March 2, 2020

US 60 Corridor (Combined)			
Benefit		BCA Value	
Railroad Benefits			
At-Grade Crossing Safety		\$	52,595,000
Rail Crossing Travel Time Savings		\$	2,622,000
At-Grade Crossing Emissions Reduction		\$	18,000
At-Grade Crossing Operations \& Maintenance Savings		\$	1,556,000
Roadway Benefits			
Roadway Safety		\$	151,536,000
Roadway Travel-Time Savings		\$	$(717,390)$
Roadway Emissions Reduction		\$	7,440
Roadway Operations \& Maintenance Savings		\$	(4,288,000)
Project Cost			
US 60 Corridor (Combined)		\$	132,791,398
	US 60 Corridor Net BCA Value		1.53
${ }^{1}$ Assumes Benefits Realized in Year 3 after Construction			
${ }^{2}$ Assumed 20 Year Lifespan (7\% Present Value)			
Rogersville			
Benefit			Value
Railroad Benefits			
At-Grade Crossing Safety		\$	2,964,000
Rail Crossing Travel Time Savings		\$	64,000
At-Grade Crossing Emissions Reduction		\$	-
At-Grade Crossing Operations \& Maintenance Savings		\$	-
Roadway Benefits			
Roadway Safety		\$	7,470,000
Roadway Travel-Time Savings		\$	$(132,750)$
Roadway Emissions Reduction		\$	540
Roadway Operations \& Maintenance Savings		\$	$(515,000)$
Project Cost			
Section I-Rogersville		\$	17,229,833
Rogersville Net BCA Value 0.57			
Fordland			
Benefit			BCA Value
Railroad Benefits			
At-Grade Crossing Safety		\$	25,483,000
Rail Crossing Travel Time Savings		\$	1,745,000
At-Grade Crossing Emissions Reduction		\$	14,000
At-Grade Crossing Operations \& Maintenance Savings		\$	996,000
Roadway Benefits			
Roadway Safety		\$	15,404,000
Roadway Travel-Time Savings		\$	$(373,520)$
Roadway Emissions Reduction		\$	500
Roadway Operations \& Maintenance Savings		\$	(1,868,000)
Project Cost			
Section II - Fordland		\$	41,185,462
Fordland Net BCA Value 1.01			

BENEFIT-COST MODEL (cont.)
US 60 CORRIDOR STUDY - WEBSTER COUNTY, MO

Diggins			
Benefit		BCA Value	
Railroad Benefits			
At-Grade Crossing Safety		\$	11,767,000
Rail Crossing Travel Time Savings		\$	576,000
At-Grade Crossing Emissions Reduction		\$	3,000
At-Grade Crossing Operations \& Maintenance Savings		\$	443,000
Roadway Benefits			
Roadway Safety		\$	34,077,000
Roadway Travel-Time Savings		\$	$(423,110)$
Roadway Emissions Reduction		\$	290
Roadway Operations \& Maintenance Savings		\$	$(1,445,000)$
Project Cost			
Section III - Diggins		\$	31,223,880
	Diggins Net BCA Value		1.44
Seymour			
Benefit			A Value
Railroad Benefits			
At-Grade Crossing Safety		\$	12,381,000
Rail Crossing Travel Time Savings		\$	237,000
At-Grade Crossing Emissions Reduction		\$	1,000
At-Grade Crossing Operations \& Maintenance Savings		\$	117,000
Roadway Benefits			
Roadway Safety		\$	94,585,000
Roadway Travel-Time Savings		\$	211,990
Roadway Emissions Reduction		\$	6,110
Roadway Operations \& Maintenance Savings		\$	(2,042,000)
Project Cost			
Section IV - Seymour		\$	43,152,223
	Seymour Net BCA Value		2.44

BENEFIT-COST MODEL - ECONOMIC BENEFITS
US 60 CORRIDOR STUDY - WEBSTER COUNTY, MO

| | | Employment Benefits |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | | New Retail/Sales |
| :---: |
| Revenue Benefits |\quad| Total Economic |
| :---: |
| Potential |\quad| Combined "Soft" |
| :---: |
| BCA Value |

${ }^{1}$ BCA Values include Safety + Current 2019 Market Trend Predictions

Roadway Benefit-Cost Tables

ROADWAY BENEFITS		
ROADWAY SAFETY BENEFITS		
1. Reduced Crash Prediction Benefits (BCA Value)	\$	151,536,000
TRAVEL TIME SAVINGS		
1. Reduced in Vehicular/Truck Traffic Delays	\$	$(717,390)$
EMISSIONS REDUCTION BENEFITS		
2. Reduction in Emissions from Idling Vehicles	\$	7,440
OTHER BENEFITS		
3. Reduction in Operations and Maintenance Expenses	\$	(4,288,000)
TOTAL BENEFITS	\$	146,538,050
TOTAL COSTS*	\$	132,791,398
COMBINED ROADWAY BCA RATIO		1.10

Benefit-Cost Analysis Inputs and Assumptions

Maintenance Assumptions			
Average Annual At-Grade Stop-Controlled Intersection Maintenance		7,500	MoDOT
Average Annual At-Grade Signalized Intersection Maintenance	\$	15,000	
Average Annual Grade-Separated Structure Maintenace	\$	100,000	
Project Costs			
Rogersville Section Costs		17,229,833	
Fordland Section Costs		41,185,462	CMT Estimates
Diggins Section Costs		31,223,880	
Seymour Section Costs	\$	43,152,223	
Vehicular Traffic Assumptions			
Average Daily Crossings Vehicular Traffic (ADT)		2,835	
Proportion of Daytime Crossings (6am to 6pm)		80\%	
Proportion of Average Evening Crossings (6pm to 6am)		20\%	MoDOT \& CMT Traffic Counts, 2019
Percent Trucks		10\%	
Percent Passenger Vehicles		90\%	
Average Annual Regional Vehicular Count Increase		1.35\%	Assumption based on projected population growth
Average Passengers per Private Vehicle		1.68	Benefit-Cost Analysis Guidance for TIGER and INFRA
Average Passengers per Truck		1.00	Applications, December 2018
Crash Assumptions			
Annual Crash Prediction	See Appendix		U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation
Fatal Accident Probability	See Appendix		
Injury Accident Probability	See Appendix		
Property Damage Only Probability	See Appendix		
Value of Travel Time Savings, per hour			
2019 dollars			
Private Vehicle Travel			
Personal	\$	15.48	
Business	\$	27.72	
All Purposes	\$	16.84	Programs, December 2018
Commercial Vehicle Operators			
Truck Drivers	\$	29.92	
Bus Drivers	\$	31.38	
Transit Rail Operators	\$	51.15	
Locomotive Engineers	\$	46.97	
Value of Injuries			
2019 dollars			
Minor Injury		150,300	MoDOT
Serious Injury	\$	577,700	MoDOT
Fatal Accident Probability		9,962,900	
Property Damage	\$	10,500	
Average Idle Emission Rates (g/hr)			
Light Duty Gasoline Fueled Vehicles			
Volatile Organic Compounds (VOC)		2.683	
Nitrogen Oxide (NOx)		3.515	
Particulate Matter ($\mathrm{PM}_{2.5}$)		N/A	
Sulfur Dioxide (SO_{2})		N/A	
Heavy Duty Diesel Vehicle			Trucks, and Heavy-Duty Trucks, EPA, October 2008
Volatile Organic Compounds (VOC)		3.455	
Nitrogen Oxide (NOx)		33.763	
Particulate Matter ($\mathrm{PM}_{2.5}$)		1.100	
Sulfur Dioxide (SO_{2})		N/A	
Value of Emissions (2017 dollars)		Short Ton	
Carbone Dioxide (CO_{2})		Varies	
Volatile Organic Compounds (VOC)	\$	2,092	Benefit-Cost Analysis Guidance for Discretionary Grant
Nitrogen Oxide (NOx)	\$	8,682	Programs, December 2018
Particulate Matter ($\mathrm{PM}_{2.5}$)	\$	395,179	
Sulfur Dioxide (SO_{2})	\$	51,149	

Roadway Table 1. Value of Travel Time Savings

Interchange	No Build Average Daily Delay (min)	Proposed Average Daily Delay (min)	Average Daily Time Savings (min)	Annual Passenger Vehicle Value of Time Delay		al Truck Value of Delay		al Value of Savings ${ }^{1}$		et Present Emissions uction scount)
White Oak	3716	4402	-686	\$ $(106,259)$	\$	$(12,486)$	\$	$(118,746)$	\$	$(132,750)$
Highway U	723	1025	-303	\$ (46,895)	\$	$(5,511)$	\$	$(52,406)$	\$	$(58,580)$
Highway FF (Burks St.)	1723	2821	-1098	\$ $(170,080)$	\$	$(19,986)$	\$	$(190,066)$	\$	$(212,470)$
Highway Z	4026	4556	-530	\$ $(82,025)$	\$	$(9,639)$	\$	$(91,664)$	\$	$(102,470)$
Highway A	4506	6693	-2187	\$ $(338,689)$	\$	$(39,799)$	\$	$(378,488)$	\$	$(423,110)$
W Clinton Ave.	8504	8380	124	\$ 19,191	\$	2,255	\$	21,446	\$	23,970
Highway K/Highway C	8094	7069	1025	\$ 158,774	\$	18,657	\$	177,431	\$	198,350
Peewee Crossing	279	333	-53	\$ $(8,267)$	\$	(971)	\$	$(9,238)$	\$	$(10,330)$
Total Annual Travel Time Savings									$\$ \quad(717,390)$	

${ }^{1}$ Traffic Patterns are assumed the same as Existing. It is expected for Traffic Patterns to Shift in the Proposed Scenario
${ }^{2}$ Assume Benefits Realized in Year 3 after Construction

Roadway Table 2a. Value of Reduced Crashes in Rogersville

		Calendar Year	
Year		Total Annual Value of Reduced Crashes	
0	2019	$\$$	-
1	2020	$\$$	-
2	2021	$\$$	849,816
3	2022	$\$$	858,314
4	2023	$\$$	866,897
5	2024	$\$$	875,566
6	2025	$\$$	884,322
7	2026	$\$$	893,165
8	2027	$\$$	902,097
9	2028	$\$$	911,118
10	2029	$\$$	920,229
11	2030	$\$$	929,431
12	2031	$\$$	938,725
13	2032	$\$$	948,113
14	2033	$\$$	957,594
15	2034	$\$$	967,170
16	2035	$\$$	976,841
17	2036	$\$$	986,610
18	2037	$\$$	996,476
19	2038	$\$$	$1,006,441$
20	2039	$\$$	$11,564,000$

Roadway Table 2b. Value of Reduced Crashes in Fordland

Year	Calendar Year	Total Annual Value of Reduced Crashes	
0	2019	$\$$	-
1	2020	$\$$	-
2	2021	$\$$	$1,752,355$
3	2022	$\$$	$1,769,878$
4	2023	$\$$	$1,787,577$
5	2024	$\$$	$1,805,453$
6	2025	$\$$	$1,823,508$
7	2026	$\$$	$1,841,743$
8	2027	$\$$	$1,860,160$
9	2028	$\$$	$1,878,762$
10	2029	$\$$	$1,897,549$
11	2030	$\$$	$1,916,525$
12	2031	$\$$	$1,935,690$
13	2032	$\$$	$1,955,047$
14	2033	$\$$	$1,974,597$
15	2034	$\$$	$1,994,343$
16	2035	$\$$	$2,014,287$
17	2036	$\$$	$2,034,430$
18	2037	$\$$	$2,054,774$
19	2038	2039	$\$$
20	Net Present Value (3\%)	$\$$	$2,075,322$
1 Assumes no savings until Year 3 after Contstruction	$15,404,000$		

[^7]Roadway Table 2c. Value of Reduced Crashes in Diggins

Year	Calendar Year	Total Annual Value of Reduced Crashes
0	2019	\$
1	2020	\$
2	2021	\$
3	2022	\$ 3,876,667
4	2023	\$ 3,915,434
5	2024	\$ 3,954,588
6	2025	\$ 3,994,134
7	2026	\$ 4,034,075
8	2027	\$ 4,074,416
9	2028	\$ 4,115,160
10	2029	\$ 4,156,312
11	2030	\$ 4,197,875
12	2031	\$ 4,239,853
13	2032	\$ 4,282,252
14	2033	\$ 4,325,075
15	2034	\$ 4,368,325
16	2035	\$ 4,412,009
17	2036	\$ 4,456,129
18	2037	\$ 4,500,690
19	2038	\$ 4,545,697
20	2039	\$ 4,591,154
Net Present Value (3\%)		\$ 52,752,000
Net Present Value (7\%)		\$ 34,077,000

Roadway Table 2d. Value of Reduced Crashes in Seymour

Year	Calendar Year	Total Annual Value of Reduced Crashes	
0	2019	$\$$	-
1	2020	$\$$	-
2	2021	$\$$	$9,509,308$
3	2022	$\$$	$9,604,401$
4	2023	$\$$	$10,189,309$
5	2024	$\$$	$10,494,988$
6	2025	$\$$	$10,809,838$
7	2026	$\$$	$11,134,133$
8	2027	$\$$	$11,468,157$
9	2028	$\$$	$11,812,202$
10	2029	$\$$	$12,166,568$
11	2030	$\$$	$12,531,565$
12	2031	$\$$	$12,907,512$
13	2032	$\$$	$13,294,737$
14	2033	$\$$	$13,693,579$
15	2034	$\$$	$14,104,387$
16	2035	$\$$	$14,527,518$
17	2036	$\$$	$14,963,344$
18	2037	$\$$	$15,412,244$
19	2038	$\$$	$149,291,000$
20	2039	$\$$	$94,585,000$
1 Assumes no savings until Year 3 after Contstruction			

[^8]Roadway Table 3. Value of Emissions Reduction for Idling Vehicles

Interchange	No Build Average Daily Control Delay (min)	ProposedAverage DailyControl Delay(min)	Time Savings (min)	Cost of Emissions for Passenger Vehicles					Cost of Emissions for Trucks						Total Annual Value of Emissions Reduction		20 Year Net Present Worth of Emissions Reduction (7\% Discount)	
					VOC		Nox	$\mathrm{PM}_{2.5}$	VOC		Nox		$\mathrm{PM}_{2.5}$					
White Oak	978	295	682	\$	23	\$	126	N/A	\$	3	\$	134	\$	199	\$	485	\$	540
Highway U	451	164	288	\$	10	\$	53	N/A	\$	1	\$	57	\$	84	\$	205	\$	230
Highway FF (Burks St.)	587	231	355	\$	12	\$	65	N/A	\$	2	\$	70	\$	104	\$	253	\$	280
Highway Z	336	351	-15	\$	(0)	\$	(3)	N/A	\$	(0)	\$	(3)	\$	(4)	\$	(10)	\$	(10)
Highway A	964	594	370	\$	13	\$	68	N/A	\$	2	\$	73	\$	108	\$	263	\$	290
W Clinton Ave.	4230	965	3265	\$	111	\$	601	N/A	\$	16	\$	642	\$	952	\$	2,321	\$	2,600
Highway K/Highway C	4969	588	4382	\$	148	\$	807	N/A	\$	21	\$	861	\$	1,277	\$	3,115	\$	3,480
Peewee Crossing	92	51	41	\$	1	\$	8	N/A	\$	0	\$	8	\$	12	\$	29	\$	30
Total Value Annual Emissions Reduction																		\$7,440

${ }^{1}$ Traffic Patterns are assumed the same as Existing. It is expected for Traffic Patterns to Shift in the Proposed Scenario
${ }^{2}$ Assume Benefits Realized in Year 3 after Construction

US 60 CORRIDOR
Roadway Table 4a. Value of Reduced Operations and Maintenance Expenses

		No Build Scenario				Build Scenario						Total O\&M Savings	
Year	Calendar Year	At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		Grade-Separated Structure Maintenance (MoDOT)			
0	2019	\$	232,500	\$	30,000	\$	232,500	\$	30,000	\$	-	\$	-
1	2020	\$	239,475	\$	30,900	\$	239,475	\$	30,900	\$	-	\$	-
2	2021	\$	246,659	\$	31,827	\$	246,659	\$	31,827	\$	-	\$	493,319
$4 \mathrm{E}+07$	2022	\$	254,059	\$	32,782	\$	-	\$	-	\$	800,000	\$	$(513,159)$
4	2023	\$	261,681	\$	33,765	\$	-	\$	-	\$	824,000	\$	$(528,554)$
5	2024	\$	269,531	\$	34,778	\$	-	\$	-	\$	848,720	\$	$(544,411)$
6	2025	\$	277,617	\$	35,822	\$	-	\$	-	\$	874,182	\$	$(560,743)$
7	2026	\$	285,946	\$	36,896	\$	-	\$	-	\$	900,407	\$	$(577,565)$
8	2027	\$	294,524	\$	38,003	\$	-	\$	-	\$	927,419	\$	$(594,892)$
9	2028	\$	303,360	\$	39,143	\$	-	\$	-	\$	955,242	\$	$(612,739)$
10	2029	\$	312,461	\$	40,317	\$	-	\$	-	\$	983,899	\$	$(631,121)$
11	2030	\$	321,834	\$	41,527	\$	-	\$	-	\$	1,013,416	\$	$(650,055)$
12	2031	\$	331,489	\$	42,773	\$	-	\$	-	\$	1,043,819	\$	$(669,556)$
13	2032	\$	341,434	\$	44,056	\$	-	\$	-	\$	1,075,133	\$	$(689,643)$
14	2033	\$	351,677	\$	45,378	\$	-	\$	-	\$	1,107,387	\$	$(710,332)$
15	2034	\$	362,227	\$	46,739	\$	-	\$	-	\$	1,140,609	\$	$(731,642)$
16	2035	\$	373,094	\$	48,141	\$	-	\$	-	\$	1,174,827	\$	$(753,592)$
17	2036	\$	384,287	\$	49,585	\$	-	\$	-	\$	1,210,072	\$	$(776,199)$
18	2037	\$	395,816	\$	51,073	\$	-	\$	-	\$	1,246,374	\$	$(799,485)$
19	2038	\$	407,690	+	52,605	\$	-	\$	-	\$	1,283,765	\$	$(823,470)$
20	2039	\$	419,921	\$	54,183	\$	-	\$	-	\$	1,322,278	\$	$(848,174)$
										Net	Value (3\%)	\$	$(7,755,000)$
										Net	Value (7\%)	\$	$(4,795,000)$

${ }^{1}$ Assumes no operations and maintenance savings until Year 3 in Build Scenario

ROGERSVILLE
Roadway Table 4b. Value of Reduced Operations and Maintenance Expenses

		No Build Scenario				Build Scenario						Total O\&M Savings	
Year	Calendar Year	At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		Grade-Separated Structure Maintenance (MoDOT)			
0	2019	\$	45,000	\$	-	\$	45,000	\$	-	\$	-	\$	-
1	2020	\$	46,350	\$	-	\$	46,350	\$	-	\$	-	\$	-
2	2021	\$	47,741	\$	-	\$	47,741	\$	-	\$	-	\$	-
3	2022	\$	49,173	\$	-	\$	-	\$	-	\$	100,000	\$	$(50,827)$
4	2023	\$	50,648	\$	-	\$	-	\$	-	\$	103,000	\$	$(52,352)$
5	2024	\$	52,167	\$	-	\$	-	\$	-	\$	106,090	\$	$(53,923)$
6	2025	\$	53,732	\$	-	\$	-	\$	-	\$	109,273	\$	$(55,540)$
7	2026	\$	55,344	\$	-	\$	-	\$	-	\$	112,551	\$	$(57,207)$
8	2027	\$	57,005	\$	-	\$	-	\$	-	\$	115,927	\$	$(58,923)$
9	2028	\$	58,715	\$	-	\$	-	\$	-	\$	119,405	\$	$(60,690)$
10	2029	\$	60,476	\$	-	\$	-	\$	-	\$	122,987	\$	$(62,511)$
11	2030	\$	62,291	\$	-	\$	-	\$	-	\$	126,677	\$	$(64,386)$
12	2031	\$	64,159	\$	-	\$	-	\$	-	\$	130,477	\$	$(66,318)$
13	2032	\$	66,084	\$	-	\$	-	\$	-	\$	134,392	\$	$(68,308)$
14	2033	\$	68,067	\$	-	\$	-	\$	-	\$	138,423	\$	$(70,357)$
15	2034	\$	70,109	\$	-	\$	-	\$	-	\$	142,576	\$	$(72,468)$
16	2035	\$	72,212	\$	-	\$	-	\$	-	\$	146,853	\$	$(74,642)$
17	2036	\$	74,378	\$	-	\$	-	\$	-	\$	151,259	\$	$(76,881)$
18	2037	\$	76,609	\$	-	\$	-	\$	-	\$	155,797	\$	$(79,187)$
19	2038	\$	78,908	\$	-	\$	-	\$	-	\$	160,471	\$	$(81,563)$
20	2039	\$	81,275	\$	-	\$	-	\$	-	\$	165,285	\$	$(84,010)$
										Net	Value (3\%)	\$	$(813,000)$
										Net	Value (7\%)	\$	$(515,000)$

[^9]ORDLAND
Roadway Table 4c. Value of Reduced Operations and Maintenance Expenses

		No Build Scenario				Build Scenario						Total O\&M Savings	
Year	Calendar Year	At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		Grade-Separated Structure Maintenance (MoDOT)			
0	2019	\$	60,000	\$	-	\$	60,000	\$	-	\$	-	\$	-
1	2020	\$	61,800	\$	-	\$	61,800	\$	-	\$	-	\$	-
2	2021	\$	63,654	\$	-	\$	63,654	\$	-	\$	-	\$	-
3	2022	\$	65,564	\$	-	\$	-	\$	-	\$	250,000	\$	$(184,436)$
4	2023	\$	67,531	\$	-	\$	-	\$	-	\$	257,500	\$	$(189,969)$
5	2024	\$	69,556	\$	-	\$	-	\$	-	\$	265,225	\$	$(195,669)$
6	2025	\$	71,643	\$	-	\$	-	\$	-	\$	273,182	\$	$(201,539)$
7	2026	\$	73,792	\$	-	\$	-	\$	-	\$	281,377	\$	$(207,585)$
8	2027	\$	76,006	\$	-	\$	-	\$	-	\$	289,819	\$	$(213,812)$
9	2028	\$	78,286	\$	-	\$	-	\$	-	\$	298,513	\$	$(220,227)$
10	2029	\$	80,635	\$	-	\$		\$	-	\$	307,468	\$	$(226,833)$
11	2030	\$	83,054	\$	-	\$	-	\$	-	\$	316,693	\$	$(233,638)$
12	2031	\$	85,546	\$	-	\$	-	\$	-	\$	326,193	\$	$(240,648)$
13	2032	\$	88,112	\$	-	\$	-	\$	-	\$	335,979	\$	$(247,867)$
14	2033	\$	90,755	\$	-	\$	-	\$	-	\$	346,058	\$	$(255,303)$
15	2034	\$	93,478	\$	-	\$	-	\$	-	\$	356,440	\$	$(262,962)$
16	2035	\$	96,282	\$	-	\$	-	\$	-	\$	367,133	\$	$(270,851)$
17	2036	\$	99,171	\$	-	\$	-	\$	-	\$	378,147	\$	$(278,977)$
18	2037	\$	102,146	\$	-	\$	-	\$	-	\$	389,492	\$	$(287,346)$
19	2038	\$	105,210	\$	-	\$	-	\$	-	\$	401,177	\$	$(295,966)$
20	2039	\$	108,367	\$	-	\$	-	\$	-	\$	413,212	\$	$(304,845)$
										Net	Value (3\%)	\$	$(2,950,000)$
										Net	Value (7\%)	\$	$(1,868,000)$

${ }^{1}$ Assumes no operations and maintenance savings until Year 3 in Build Scenario
DIGGINS
Roadway Table 4d. Value of Reduced Operations and Maintenance Expenses

		No Build Scenario				Build Scenario						Total O\&M Savings	
Year	Calendar Year	At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		Grade-Separated Structure Maintenance (MoDOT)			
0	2019	\$	52,500	\$	-	\$	52,500	\$	-	\$	-	\$	
1	2020	\$	54,075	\$	-	\$	54,075	\$	-	\$	-	\$	-
2	2021	\$	55,697	\$	-	\$	55,697	\$	-	\$	-	\$	-
3	2022	\$	57,368	\$	-	\$	-	\$	-	\$	200,000	\$	$(142,632)$
4	2023	\$	59,089	\$	-	\$	-	\$	-	\$	206,000	\$	$(146,911)$
5	2024	\$	60,862	\$	-	\$	-	\$	-	\$	212,180	\$	$(151,318)$
6	2025	\$	62,688	\$	-	\$	-	\$	-	\$	218,545	\$	$(155,858)$
7	2026	\$	64,568	\$	-	\$	-	\$	-	\$	225,102	\$	$(160,533)$
8	2027	\$	66,505	\$	-	\$	-	\$	-	\$	231,855	\$	$(165,349)$
9	2028	\$	68,501	\$	-	\$	-	\$	-	\$	238,810	\$	$(170,310)$
10	2029	\$	70,556	\$	-	\$	-	\$	-	\$	245,975	\$	$(175,419)$
11	2030	\$	72,672	\$	-	\$	-	\$	-	\$	253,354	\$	$(180,682)$
12	2031	\$	74,852	\$	-	\$	-	\$	-	\$	260,955	\$	$(186,102)$
13	2032	\$	77,098	\$	-	\$	-	\$	-	\$	268,783	\$	$(191,685)$
14	2033	\$	79,411	\$	-	\$	-	\$	-	\$	276,847	\$	$(197,436)$
15	2034	\$	81,793	\$	-	\$	-	\$	-	\$	285,152	\$	$(203,359)$
16	2035	\$	84,247	\$	-	\$	-	\$	-	\$	293,707	\$	$(209,460)$
17	2036	\$	86,775	\$	-	\$	-	\$	-	\$	302,518	\$	$(215,743)$
18	2037	\$	89,378	\$	-	\$	-	\$	-	\$	311,593	\$	$(222,216)$
19	2038	\$	92,059	\$	-	\$	-	\$	-	\$	320,941	\$	$(228,882)$
20	2039	\$	94,821	\$	-	\$	-	\$	-	\$	330,570	\$	$(235,749)$
										Net	Value (3\%)	\$	$(2,281,000)$
										Net	Value (7\%)	\$	$(1,445,000)$

[^10]SEYMOUR
Roadway Table 4e. Value of Reduced Operations and Maintenance Expenses

		No Build Scenario				Build Scenario						Total O\&M Savings	
Year	Calendar Year	At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		At-Grade StopControlled Intersection Maintenance (MoDOT)		At-Grade Signalized Intersection Maintenance (MoDOT)		Grade-Separated Structure Maintenance (MoDOT)			
0	2019	\$	60,000	\$	30,000	\$	60,000	\$	30,000	\$	-	\$	-
1	2020	\$	61,800	\$	30,900	\$	61,800	\$	30,900	\$	-	\$	-
2	2021	\$	63,654	\$	31,827	\$	63,654	\$	31,827	\$	-	\$	-
3	2022	\$	65,564	\$	32,782	\$	-	\$	-	\$	300,000	\$	$(201,655)$
4	2023	\$	67,531	\$	33,765	\$	-	\$	-	\$	309,000	\$	$(207,704)$
5	2024	\$	69,556	\$	34,778	\$	-	\$	-	\$	318,270	\$	$(213,935)$
6	2025	\$	71,643	\$	35,822	\$	-	\$	-	\$	327,818	\$	$(220,353)$
7	2026	\$	73,792	\$	36,896	\$	-	\$	-	\$	337,653	\$	$(226,964)$
8	2027	\$	76,006	\$	38,003	\$	-	\$	-	\$	347,782	\$	$(233,773)$
9	2028	\$	78,286	\$	39,143	\$	-	\$	-	\$	358,216	\$	$(240,786)$
10	2029	\$	80,635	\$	40,317	\$	-	\$	-	\$	368,962	\$	$(248,010)$
11	2030	\$	83,054	\$	41,527	\$	-	\$	-	\$	380,031	\$	$(255,450)$
12	2031	\$	85,546	\$	42,773	\$	-	\$	-	\$	391,432	\$	$(263,113)$
13	2032	\$	88,112	\$	44,056	\$	-	\$	-	\$	403,175	\$	$(271,007)$
14	2033	\$	90,755	\$	45,378	\$	-	\$	-	\$	415,270	\$	$(279,137)$
15	2034	\$	93,478	\$	46,739	\$	-	\$	-	\$	427,728	\$	$(287,511)$
16	2035	\$	96,282	\$	48,141	\$	-	\$	-	\$	440,560	\$	$(296,137)$
17	2036	\$	99,171	\$	49,585	\$	-	\$	-	\$	453,777	\$	$(305,021)$
18	2037	\$	102,146	\$	51,073	\$	-	\$	-	\$	467,390	\$	$(314,171)$
19	2038	\$	105,210	\$	52,605	\$	-	\$	-	\$	481,412	\$	$(323,596)$
20	2039	\$	108,367	\$	54,183	\$	-	\$	-	\$	495,854	\$	$(333,304)$
										Net	Value (3\%)	\$	$(3,225,000)$
										Net	Value (7\%)	\$	$(2,042,000)$

[^11]
Railroad Benefit-Cost Tables

BENEFITS		
RAIL SAFETY BENEFITS		
1. Reduced Crash Prediction Benefits (BCA Value)	\$	52,595,000.00
TRAVEL TIME SAVINGS		
2. Reduced in Vehicular/Truck Traffic Delays	\$	2,622,000
EMISSIONS REDUCTION BENEFITS		
3. Reduction in Emissions from Idling Vehicles	\$	18,000
OTHER BENEFITS		
4. Reduction in Operations and Maintenance Expenses	\$	1,556,000
TOTAL BENEFITS	\$	56,791,000
TOTAL COSTS*	\$	132,791,398
COMBINED RAIL BCA RATIO		0.43

Benefit-Cost Analysis Inputs and Assumptions

Description	Value	Source
General Assumptions		
Discount Rate @ 3\%	3\%	
Discount Rate @ 7\%	7\%	3537
Webster County 2019 Population	39,607	
Webster County Projected 2029 Population	50,697	
Total Projected Population Change	28.0\%	ESRI 2019, EMSI 2019, Census, CMT Estima
Annual Average Projected Population Change	1.92\%	
Annual Increase in Maintenance Costs	3.00\%	Assumption
Conversion of 2017 to 2019 dollars	1.046	Bureau of Labor Statistics (BLS)
Miles to foot ratio	0.000189	
Grams per Short Ton	907,185	
Project Costs		
Rogersville Section Costs	\$ 17,229,833	
Fordland Section Costs	\$ 41,185,462	CMT Estimates
Diggins Section Costs	31,223,880	
Seymour Section Costs	43,152,223	
Train Crossing Assumptions		
Baseline		
Average Daily Train Movements	27	
Average Train Length in Feet (Min)	6,000	
Average Train Length in Feet (Max)	7,300	
Average Train Length in Feet (Avg)	6,650	
Average crossing speed (MPH)	30	
Current Average Train Crossing Time (min)	2.519	
Average Crossing Closure (add 1 min)	3.519	BNSF Railway Company
Average Idle time per vehicle (add 1 min)	4.519	
Proportion of Daytime Crossings (6am to 6pm)	50\%	
Proportion of Average Evening Crossings (6pm to 6am)	50\%	
Projected		
Projected Average Train Length in Feet (Min)	8,800	
Projected Average Train Length in Feet (Max)	10,000	
Projected Average Train Length (Avg)	9,400	
Average Annual Train Length Increase	1.40\%	BNSF Railway Company
Average Annual Increase in Crossings	1.50\%	National Freight Strategic Plan, DOT (October 2015)
Vehicular Traffic Assumptions		
Average Daily Crossings Vehicular Traffic (ADT)	2,835	
Proportion of Daytime Crossings (6am to 6pm)	80\%	
Proportion of Average Evening Crossings (6pm to 6am)	20\%	MoDOT \& CMT Traffic Counts, 2019
Percent Trucks	10\%	
Percent Passenger Vehicles	90\%	
Average Annual Regional Vehicular Count Increase	1.92\%	Assumption based on projected population growth
Average Passengers per Private Vehicle	1.68	Benefit-Cost Analysis Guidance for TIGER and INFRA Applications,
Average Passengers per Truck	1.00	December 2018
Crash Assumptions		
Annual Crash Prediction	See Appendix	
Fatal Accident Probability	See Appendix	
Injury Accident Probability	See Appendix	Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation
Property Damage Only Probability	See Appendix	
Value of Travel Time Savings, per hour		
2019 dollars		
Private Vehicle Travel		
Personal	\$ 15.48	
Business	27.72	
All Purposes	16.84	December 2018
Commercial Vehicle Operators		
Truck Drivers	29.92	
Bus Drivers	31.38	
Transit Rail Operators	51.15	
Locomotive Engineers	46.97	
Value of Injuries		
2019 dollars		
MAIS 1 (Minor)	\$ 30,100	
MAIS 2 (Moderate)	472,000	
MAIS 3 (Serious)	\$ 1,054,000	Benefit-Cost Analysis Guidance for Discretionary Grant Programs,
MAIS 4 (Severe)	\$ 2,671,000	
MAIS 5 (Critical)	\$ 5,955,000	
MAIS 6 (Not survivable)	\$ 10,042,000	
Property Damage	4,500	
Average Idle Emission Rates (g/hr)		
Light Duty Gasoline Fueled Vehicles		
Volatile Organic Compounds (VOC)	2.683	
Nitrogen Oxide (NOX)	3.515	
Particulate Matter ($\mathrm{PM}_{2.5}$)	N/A	
Sulfur Dioxide (SO_{2})	N/A	
Heavy Duty Diesel Vehicle		Heavy-Duty Trucks, EPA, October 2008
Volatile Organic Compounds (VOC)	3.455	
Nitrogen Oxide (NOX)	33.763	
Particulate Matter ($\mathrm{PM}_{2.5}$)	1.100	
Sulfur Dioxide (SO_{2})	N/A	
Value of Emissions (2017 dollars)	\$/ Short Ton	
Carbone Dioxide (CO_{2})	Varies	
Volatile Organic Compounds (VOC)	2,092	Benefit-Cost Analysis Guidance for Discretionary Grant Programs,
Nitrogen Oxide (NOX)	8,682	December 2018
Particulate Matter ($\mathrm{PM}_{2.5}$)	\$ 395,179	
Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$	51,149	

ROGERSVILLE
Rail Table 1a-2.. Value of Travel Time Savings: Estimated Delay of Passenger Vehicles and Trucks in No Build Scenario

Year	Calendar Year	Average Daily Traffic	Daytime Crossings (6am to 6pm)								
			Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Average Daily Train Crossings	Average Crossing Delay per Vehicle (min)	Total Average Daily Delay (min)	Total Average Daytime Passenger Vehicle Delay (min)	Total Average Daytime Truck Vehicle Delay (min)
0	2019	89	64	7	4	1	13.50	4.52	61.0	16	6
1	2020	91	65	7	4	1	13.70	4.58	62.8	17	6
2	2021	92	67	7	4	1	13.91	4.65	64.6	18	6
3	2022	94	68	8	4	1	14.12	4.71	66.5	19	6
4	2023	96	69	8	4	1	14.33	4.78	68.5	20	7
5	2024	98	70	8	4	1	14.54	4.84	70.5	21	7
6	2025	100	72	8	4	1	14.76	4.91	72.5	22	7
7	2026	102	73	8	5	2	14.98	4.98	74.6	23	8
8	2027	104	75	8	5	2	15.21	5.05	76.8	24	8
9	2028	106	76	8	5	2	15.44	5.12	79.1	25	8
10	2029	108	77	9	5	2	15.67	5.19	81.4	27	9
11	2030	110	79	9	5	2	15.90	5.27	83.7	28	9
12	2031	112	80	9	5	2	16.14	5.34	86.2	29	10
13	2032	114	82	9	6	2	16.38	5.41	88.7	31	10
14	2033	116	84	9	6	2	16.63	5.49	91.3	32	11
15	2034	118	85	9	6	2	16.88	5.57	94.0	34	11
16	2035	121	87	10	6	2	17.13	5.64	96.7	35	12
17	2036	123	88	10	6	2	17.39	5.72	99.5	37	12
18	2037	125	90	10	7	2	17.65	5.80	102.4	39	13
19	2038	128	92	10	7	2	17.91	5.89	105.4	41	13
20	2039	130	94	10	7	2	18.18	5.97	108.5	43	14
			Evening Crossings (6pm to 6am)								
Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Evening Train Crossings	Average Evening Vehicle Delay (min)	Total Average Daily Delay (min)	Total Average Evening Passenger Vehicle Delay (min)	Total Average Evening Truck Vehicle Delay (min)
0	2019	89	16	2	1	0	13.50	4.52	61.0	4	1
1	2020	91	16	2	1	0	13.70	4.58	62.8	4	1
2	2021	92	17	2	1	0	13.91	4.65	64.6	5	2
3	2022	94	17	2	1	0	14.12	4.71	66.5	5	2
4	2023	96	17	2	1	0	14.33	4.78	68.5	5	2
5	2024	98	18	2	1	0	14.54	4.84	70.5	5	2
6	2025	100	18	2	1	0	14.76	4.91	72.5	5	2
7	2026	102	18	2	1	0	14.98	4.98	74.6	6	2
8	2027	104	19	2	1	0	15.21	5.05	76.8	6	2
9	2028	106	19	2	1	0	15.44	5.12	79.1	6	2
10	2029	108	19	2	1	0	15.67	5.19	81.4	7	2
11	2030	110	20	2	1	0	15.90	5.27	83.7	7	2
12	2031	112	20	2	1	0	16.14	5.34	86.2	7	2
13	2032	114	21	2	1	0	16.38	5.41	88.7	8	3
14	2033	116	21	2	1	0	16.63	5.49	91.3	8	3
15	2034	118	21	2	2	0	16.88	5.57	94.0	8	3
16	2035	121	22	2	2	1	17.13	5.64	96.7	9	3
17	2036	123	22	2	2	1	17.39	5.72	99.5	9	3
18	2037	125	23	3	2	1	17.65	5.80	102.4	10	3
19	2038	128	23	3	2	1	17.91	5.89	105.4	10	3
20	2039	130	23	3	2	1	18.18	5.97	108.5	11	4

FORDLAND
Rail Table 1a-3.. Value of Travel Time Savings: Estimated Delay of Passenger Vehicles and Trucks in No Build Scenario

Year	Calendar Year	Average Daily Traffic	Daytime Crossings (6am to 6pm)								
			Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Average Daily Train Crossings	Average Crossing Delay per Vehicle (min)	Total Average Daily Delay (min)	Total Average Daytime Passenger Vehicle Delay (min)	Total Average Daytime Truck Vehicle Delay (min)
0	2019	2,413	1,737	193	99	33	13.50	4.52	61.0	447	149
1	2020	2,459	1,771	197	102	34	13.70	4.58	62.8	468	157
2	2021	2,506	1,805	201	106	35	13.91	4.65	64.6	491	164
3	2022	2,554	1,839	204	109	37	14.12	4.71	66.5	515	172
4	2023	2,603	1,874	208	113	38	14.33	4.78	68.5	541	180
5	2024	2,653	1,910	212	117	39	14.54	4.84	70.5	567	189
6	2025	2,704	1,947	216	121	40	14.76	4.91	72.5	595	198
7	2026	2,756	1,984	220	125	42	14.98	4.98	74.6	624	207
8	2027	2,809	2,022	225	130	43	15.21	5.05	76.8	654	217
9	2028	2,863	2,061	229	134	44	15.44	5.12	79.1	687	228
10	2029	2,918	2,101	233	139	46	15.67	5.19	81.4	720	239
11	2030	2,974	2,141	238	143	47	15.90	5.27	83.7	755	250
12	2031	3,031	2,182	242	148	49	16.14	5.34	86.2	792	262
13	2032	3,089	2,224	247	154	51	16.38	5.41	88.7	831	275
14	2033	3,148	2,266	252	159	52	16.63	5.49	91.3	872	288
15	2034	3,208	2,310	257	164	54	16.88	5.57	94.0	914	302
16	2035	3,270	2,354	262	170	56	17.13	5.64	96.7	959	316
17	2036	3,332	2,399	267	176	58	17.39	5.72	99.5	1,006	331
18	2037	3,396	2,445	272	182	60	17.65	5.80	102.4	1,055	347
19	2038	3,461	2,492	277	188	62	17.91	5.89	105.4	1,107	364
20	2039	3,528	2,540	282	195	64	18.18	5.97	108.5	1,161	381
			Evening Crossings (6pm to 6am)								
Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Evening Train Crossings	Average Evening Vehicle Delay (min)	Total Average Daily Delay (min)	Total Average Evening Passenger Vehicle Delay (min)	Total Average Evening Truck Vehicle Delay (min)
0	2019	2,413	434	48	25	8	13.50	4.52	61.0	112	37
1	2020	2,459	443	49	26	9	13.70	4.58	62.8	117	39
2	2021	2,506	451	50	26	9	13.91	4.65	64.6	123	41
3	2022	2,554	460	51	27	9	14.12	4.71	66.5	129	43
4	2023	2,603	469	52	28	9	14.33	4.78	68.5	135	45
5	2024	2,653	478	53	29	10	14.54	4.84	70.5	142	47
6	2025	2,704	487	54	30	10	14.76	4.91	72.5	149	49
7	2026	2,756	496	55	31	10	14.98	4.98	74.6	156	52
8	2027	2,809	506	56	32	11	15.21	5.05	76.8	164	54
9	2028	2,863	515	57	34	11	15.44	5.12	79.1	172	57
10	2029	2,918	525	58	35	11	15.67	5.19	81.4	180	60
11	2030	2,974	535	59	36	12	15.90	5.27	83.7	189	63
12	2031	3,031	545	61	37	12	16.14	5.34	86.2	198	66
13	2032	3,089	556	62	38	13	16.38	5.41	88.7	208	69
14	2033	3,148	567	63	40	13	16.63	5.49	91.3	218	72
15	2034	3,208	577	64	41	14	16.88	5.57	94.0	229	75
16	2035	3,270	589	65	42	14	17.13	5.64	96.7	240	79
17	2036	3,332	600	67	44	14	17.39	5.72	99.5	252	83
18	2037	3,396	611	68	45	15	17.65	5.80	102.4	264	87
19	2038	3,461	623	69	47	15	17.91	5.89	105.4	277	91
20	2039	3,528	635	71	49	16	18.18	5.97	108.5	290	95

DIGGINS
Rail Table 1a-4. Value of Travel Time Savings: Estimated Delay of Passenger Vehicles and Trucks in No Build Scenario

Year	Calendar Year	Average Daily Traffic	Daytime Crossings (6am to 6pm)								
			Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Average Daily Train Crossings	Average Crossing Delay per Vehicle (min)	Total Average Daily Delay (min)	Total Average Daytime Passenger Vehicle Delay (min)	Total Average Daytime Truck Vehicle Delay (min)
0	2019	796	573	64	33	11	13.50	4.52	61.0	147	49
1	2020	811	584	65	34	11	13.70	4.58	62.8	155	52
2	2021	827	595	66	35	12	13.91	4.65	64.6	162	54
3	2022	843	607	67	36	12	14.12	4.71	66.5	170	57
4	2023	859	618	69	37	12	14.33	4.78	68.5	178	59
5	2024	875	630	70	39	13	14.54	4.84	70.5	187	62
6	2025	892	642	71	40	13	14.76	4.91	72.5	196	65
7	2026	909	655	73	41	14	14.98	4.98	74.6	206	68
8	2027	927	667	74	43	14	15.21	5.05	76.8	216	72
9	2028	944	680	76	44	15	15.44	5.12	79.1	226	75
10	2029	962	693	77	46	15	15.67	5.19	81.4	238	79
11	2030	981	706	78	47	16	15.90	5.27	83.7	249	83
12	2031	1,000	720	80	49	16	16.14	5.34	86.2	261	86
13	2032	1,019	734	82	51	17	16.38	5.41	88.7	274	91
14	2033	1,038	748	83	52	17	16.63	5.49	91.3	288	95
15	2034	1,058	762	85	54	18	16.88	5.57	94.0	302	99
16	2035	1,079	777	86	56	18	17.13	5.64	96.7	316	104
17	2036	1,099	791	88	58	19	17.39	5.72	99.5	332	109
18	2037	1,120	807	90	60	20	17.65	5.80	102.4	348	114
19	2038	1,142	822	91	62	20	17.91	5.89	105.4	365	120
20	2039	1,164	838	93	64	21	18.18	5.97	108.5	383	126
			Evening Crossings (6pm to 6am)								
Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Evening Train Crossings	Average Evening Vehicle Delay (min)	Total Average Daily Delay (min)	Total Average Evening Passenger Vehicle Delay (min)	Total Average Evening Truck Vehicle Delay (min)
0	2019	796	143	16	8	3	13.50	4.52	61.0	37	12
1	2020	811	146	16	8	3	13.70	4.58	62.8	39	13
2	2021	827	149	17	9	3	13.91	4.65	64.6	41	14
3	2022	843	152	17	9	3	14.12	4.71	66.5	43	14
4	2023	859	155	17	9	3	14.33	4.78	68.5	45	15
5	2024	875	158	18	10	3	14.54	4.84	70.5	47	16
6	2025	892	161	18	10	3	14.76	4.91	72.5	49	16
7	2026	909	164	18	10	3	14.98	4.98	74.6	51	17
8	2027	927	167	19	11	4	15.21	5.05	76.8	54	18
9	2028	944	170	19	11	4	15.44	5.12	79.1	57	19
10	2029	962	173	19	11	4	15.67	5.19	81.4	59	20
11	2030	981	177	20	12	4	15.90	5.27	83.7	62	21
12	2031	1,000	180	20	12	4	16.14	5.34	86.2	65	22
13	2032	1,019	183	20	13	4	16.38	5.41	88.7	69	23
14	2033	1,038	187	21	13	4	16.63	5.49	91.3	72	24
15	2034	1,058	190	21	14	4	16.88	5.57	94.0	75	25
16	2035	1,079	194	22	14	5	17.13	5.64	96.7	79	26
17	2036	1,099	198	22	14	5	17.39	5.72	99.5	83	27
18	2037	1,120	202	22	15	5	17.65	5.80	102.4	87	29
19	2038	1,142	206	23	16	5	17.91	5.89	105.4	91	30
20	2039	1,164	209	23	16	5	18.18	5.97	108.5	96	31

SEYMOUR
Rail Table 1a-5. Value of Travel Time Savings: Estimated Delay of Passenger Vehicles and Trucks in No Build Scenario

Year	Calendar Year	Average Daily Traffic	Daytime Crossings (6am to 6pm)								
			Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Average Daily Train Crossings	Average Crossing Delay per Vehicle (min)	Total Average Daily Delay (min)	Total Average Daytime Passenger Vehicle Delay (min)	Total Average Daytime Truck Vehicle Delay (min)
0	2019	328	236	26	13	4	13.50	4.52	61.0	61	20
1	2020	334	241	27	14	5	13.70	4.58	62.8	64	21
2	2021	341	245	27	14	5	13.91	4.65	64.6	67	22
3	2022	347	250	28	15	5	14.12	4.71	66.5	70	23
4	2023	354	255	28	15	5	14.33	4.78	68.5	73	25
5	2024	361	260	29	16	5	14.54	4.84	70.5	77	26
6	2025	368	265	29	16	5	14.76	4.91	72.5	81	27
7	2026	375	270	30	17	6	14.98	4.98	74.6	85	28
8	2027	382	275	31	18	6	15.21	5.05	76.8	89	30
9	2028	389	280	31	18	6	15.44	5.12	79.1	93	31
10	2029	397	286	32	19	6	15.67	5.19	81.4	98	32
11	2030	404	291	32	19	6	15.90	5.27	83.7	103	34
12	2031	412	297	33	20	7	16.14	5.34	86.2	108	36
13	2032	420	302	34	21	7	16.38	5.41	88.7	113	37
14	2033	428	308	34	22	7	16.63	5.49	91.3	119	39
15	2034	436	314	35	22	7	16.88	5.57	94.0	124	41
16	2035	444	320	36	23	8	17.13	5.64	96.7	130	43
17	2036	453	326	36	24	8	17.39	5.72	99.5	137	45
18	2037	462	332	37	25	8	17.65	5.80	102.4	143	47
19	2038	471	339	38	26	8	17.91	5.89	105.4	150	49
20	2039	480	345	38	26	9	18.18	5.97	108.5	158	52
			Evening Crossings (6pm to 6am)								
Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Estimated Passenger Vehicles Affected	Estimated Trucks Affected	Assumed Evening Train Crossings	Average Evening Vehicle Delay (min)	Total Average Daily Delay (min)	Total Average Evening Passenger Vehicle Delay (min)	Total Average Evening Truck Vehicle Delay (min)
0	2019	328	59	7	3	1	13.50	4.52	61.0	15	5
1	2020	334	60	7	3	1	13.70	4.58	62.8	16	5
2	2021	341	61	7	4	1	13.91	4.65	64.6	17	6
3	2022	347	63	7	4	1	14.12	4.71	66.5	18	6
4	2023	354	64	7	4	1	14.33	4.78	68.5	18	6
5	2024	361	65	7	4	1	14.54	4.84	70.5	19	6
6	2025	368	66	7	4	1	14.76	4.91	72.5	20	7
7	2026	375	67	7	4	1	14.98	4.98	74.6	21	7
8	2027	382	69	8	4	1	15.21	5.05	76.8	22	7
9	2028	389	70	8	5	2	15.44	5.12	79.1	23	8
10	2029	397	71	8	5	2	15.67	5.19	81.4	24	8
11	2030	404	73	8	5	2	15.90	5.27	83.7	26	8
12	2031	412	74	8	5	2	16.14	5.34	86.2	27	9
13	2032	420	76	8	5	2	16.38	5.41	88.7	28	9
14	2033	428	77	9	5	2	16.63	5.49	91.3	30	10
15	2034	436	78	9	6	2	16.88	5.57	94.0	31	10
16	2035	444	80	9	6	2	17.13	5.64	96.7	33	11
17	2036	453	82	9	6	2	17.39	5.72	99.5	34	11
18	2037	462	83	9	6	2	17.65	5.80	102.4	36	12
19	2038	471	85	9	6	2	17.91	5.89	105.4	38	12
20	2039	480	86	10	7	2	18.18	5.97	108.5	39	13

ROGERSVILLE
Rail Table 1b-2. Value of Travel Time Savings in Build Scenario
$\left.\begin{array}{cccc|cc:c}\hline \hline & \begin{array}{c}\text { Total Average } \\ \text { Daily Passenger } \\ \text { Vehicle Delay }\end{array} & \begin{array}{c}\text { Total } \\ \text { Average } \\ \text { Daily Truck }\end{array} & \begin{array}{c}\text { Annual } \\ \text { Passenger }\end{array} & \begin{array}{c}\text { Annual Truck } \\ \text { Vehicle Value of } \\ \text { Time Delay }\end{array} & \begin{array}{c}\text { Driver Value of } \\ \text { Time Delay }\end{array} & \begin{array}{c}\text { Total Annual Value } \\ \text { of Travel Time }\end{array} \\ \text { Year } & \text { Calendar Year } & 2019 & 21 & 7 & \$ & - \\ \text { Sangs }^{1}\end{array}\right]$
${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed
FORDLAND
Rail Table 1b-3. Value of Travel Time Savings in Build Scenario

Year	Calendar Year	Total Average Daily Passenger Vehicle Delay (min)	Total Average Daily Truck Delay (min)		Annual Passenger ehicle Value of Time Delay		Truck value of Delay		ual Value ITime gs ${ }^{1}$
0	2019	558	187	\$	-	\$	-	\$	-
1	2020	586	196	\$	-	\$	-	\$	-
2	2021	614	205	\$	-	\$	-	\$	-
3	2022	644	215	\$	110,883	\$	39,130	\$	150,013
4	2023	676	225	\$	116,309	\$	41,005	\$	157,314
5	2024	709	236	\$	122,002	\$	42,969	\$	164,971
6	2025	744	247	\$	127,972	\$	45,028	\$	173,000
7	2026	780	259	\$	134,236	\$	47,185	\$	181,421
8	2027	818	272	\$	140,805	\$	49,446	\$	190,251
9	2028	858	285	\$	147,696	\$	51,814	\$	199,511
10	2029	900	298	\$	154,925	\$	54,297	\$	209,221
11	2030	944	313	\$	162,507	\$	56,898	\$	219,405
12	2031	990	328	\$	170,460	\$	59,624	\$	230,084
13	2032	1,039	343	\$	178,802	\$	62,480	\$	241,282
14	2033	1,090	360	\$	187,553	\$	65,473	\$	253,026
15	2034	1,143	377	\$	196,732	\$	68,610	\$	265,342
16	2035	1,199	395	\$	206,360	\$	71,897	\$	278,257
17	2036	1,258	414	\$	216,460	\$	75,341	\$	291,801
18	2037	1,319	434	\$	227,053	\$	78,951	\$	306,004
19	2038	1,384	455	\$	238,166	\$	82,733	\$	320,899
20	2039	1,452	476	\$	249,822	\$	86,697	\$	336,518
Net Present Value (3\%)									
Net Present Value (7\%)								\$1,745,000	

${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

DIGGINS
Rail Table 1b-4. Value of Travel Time Savings in Build Scenario

	Total Average Daily Passenger Vehicle Delay	Total Average (maily Delay (min)	Annual Passenger Venicle Value of Time Delay	Annual Truck Driver Value of Time Delay	Total Annual Value of Travel Time Savings ${ }^{1}$	
Year	Calendar Year	2019	184	62	$\$$	-

${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed
SEYMOUR
Rail Table 1b-5. Value of Travel Time Savings in Build Scenario

	Total Average Daily Passenger Vehicle Delay	Total Average Daily Truck Delay (min)	Annual Passenger Vehicle Value of Time Delay	Annual Truck Driver Value of Time Delay	Total Annual Value of Travel Time Savings ${ }^{1}$	
Year	Calendar Year	2019	76	25	$\$$	-

${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

FORDLAND
Rail Table 1b-3. Value of Travel Time Savings in Build Scenario

${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

DIGGINS
Rail Table 1b-4. Value of Travel Time Savings in Build Scenario
\(\left.$$
\begin{array}{cccc|cc:c}\hline & & \begin{array}{c}\text { Total Average } \\
\text { Daily Passenger } \\
\text { Vehicle Delay }\end{array} & \begin{array}{c}\text { Total } \\
\text { Average } \\
\text { Daily Truck } \\
\text { Delay (min) }\end{array} & \begin{array}{c}\text { Annual } \\
\text { Passenger } \\
\text { Vehicle Value of } \\
\text { Time Delay }\end{array} & \begin{array}{c}\text { Annual Truck } \\
\text { Driver Value of } \\
\text { Time Delay }\end{array} & \begin{array}{c}\text { Total Annual Value } \\
\text { of Travel Time }\end{array}
$$

Year \& Calendar Year \& 2019 \& 189 \& 63 \& \$ \& -

Savings^{1}\end{array}\right]\)| $\$$ |
| :--- |
| 0 |

[^12]SEYMOUR
Rail Table 1b-5. Value of Travel Time Savings in Build Scenario

		Total Average Daily Passenger Vehicle Delay	Total Average Daily Truck Delay (min)	Annual Passenger Vehicle Value of Time Delay	Annual Truck Driver Value of Time Delay	Total Annual Value of Travel Time	
Year	Calendar Year	2019	78	26	$\$$	-	$\$$
Savings ${ }^{1}$							

[^13]Rail Table 2a. Value of Safety Benefits for Porter Crossing Road At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0568	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0570	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	3537.0000	0.0875	0.3113	0.6011	\$	-
3	2022	0.0514	0.0875	0.3113	0.6011	\$	376,047
4	2023	0.0681	0.0875	0.3113	0.6011	\$	390,754
5	2024	0.0682	0.0875	0.3113	0.6011	\$	390,769
6	2025	0.0682	0.0875	0.3113	0.6011	\$	390,774
7	2026	0.0682	0.0875	0.3113	0.6011	\$	390,776
8	2027	0.0682	0.0875	0.3113	0.6011	\$	390,778
9	2028	0.0682	0.0875	0.3113	0.6011	\$	390,779
10	2029	0.0682	0.0875	0.3113	0.6011	\$	390,779
11	2030	0.0682	0.0875	0.3113	0.6011	\$	320,429
12	2031	0.0682	0.0875	0.3113	0.6011	\$	320,517
13	2032	0.0682	0.0875	0.3113	0.6011	\$	320,605
14	2033	0.0682	0.0875	0.3113	0.6011	\$	320,693
15	2034	0.0682	0.0875	0.3113	0.6011	\$	320,780
16	2035	0.0682	0.0875	0.3113	0.6011	\$	320,866
17	2036	0.0682	0.0875	0.3113	0.6011	\$	320,953
18	2037	0.0682	0.0875	0.3113	0.6011	\$	321,039
19	2038	0.0682	0.0875	0.3113	0.6011	\$	321,124
20	2039	0.0682	0.0875	0.3113	0.6011	\$	321,209
Net Present Value (3\%)						\$	4,474,000
Net Present Value (7\%)						\$	2,964,000
See Appendix 2 for Crash Probability calculations							
${ }^{\text {< See Appendix }} 3$ for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Rail Table 2b. Value of Safety Benefits for Dutch Hill Road At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and lities ${ }^{4}$
0	2019	0.0055	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0055	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0056	0.0875	0.3113	0.6011	\$	-
3	2022	0.0056	0.0875	0.3113	0.6011	\$	335,775
4	2023	0.0056	0.0875	0.3113	0.6011	\$	335,815
5	2024	0.0057	0.0875	0.3113	0.6011	\$	335,854
6	2025	0.0057	0.0875	0.3113	0.6011	\$	335,894
7	2026	0.0058	0.0875	0.3113	0.6011	\$	335,934
8	2027	0.0058	0.0875	0.3113	0.6011	\$	335,974
9	2028	0.0059	0.0875	0.3113	0.6011	\$	336,014
10	2029	0.0059	0.0875	0.3113	0.6011	\$	336,055
11	2030	0.0060	0.0875	0.3113	0.6011	\$	336,095
12	2031	0.0060	0.0875	0.3113	0.6011	\$	336,136
13	2032	0.0061	0.0875	0.3113	0.6011	\$	336,177
14	2033	0.0061	0.0875	0.3113	0.6011	\$	336,219
15	2034	0.0061	0.0875	0.3113	0.6011	\$	336,260
16	2035	0.0062	0.0875	0.3113	0.6011	\$	336,302
17	2036	0.0062	0.0875	0.3113	0.6011	\$	336,344
18	2037	0.0063	0.0875	0.3113	0.6011	\$	336,386
19	2038	0.0063	0.0875	0.3113	0.6011	\$	336,428
20	2039	0.0064	0.0875	0.3113	0.6011	\$	336,471
Net Present Value (3\%)						\$	4,230,000
Net Present Value (7\%)						\$	2,759,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0568	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0570	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	3537.0000	0.0875	0.3113	0.6011	\$	-
3	2022	0.0514	0.0875	0.3113	0.6011	\$	376,047
4	2023	0.0681	0.0875	0.3113	0.6011	\$	390,754
5	2024	0.0682	0.0875	0.3113	0.6011	\$	390,769
6	2025	0.0682	0.0875	0.3113	0.6011	\$	390,774
7	2026	0.0682	0.0875	0.3113	0.6011	\$	390,776
8	2027	0.0682	0.0875	0.3113	0.6011	\$	390,778
9	2028	0.0682	0.0875	0.3113	0.6011	\$	390,779
10	2029	0.0682	0.0875	0.3113	0.6011	\$	390,779
11	2030	0.0682	0.0875	0.3113	0.6011	\$	320,429
12	2031	0.0682	0.0875	0.3113	0.6011	\$	320,517
13	2032	0.0682	0.0875	0.3113	0.6011	\$	320,605
14	2033	0.0682	0.0875	0.3113	0.6011	\$	320,693
15	2034	0.0682	0.0875	0.3113	0.6011	\$	320,780
16	2035	0.0682	0.0875	0.3113	0.6011	\$	320,866
17	2036	0.0682	0.0875	0.3113	0.6011	\$	320,953
18	2037	0.0682	0.0875	0.3113	0.6011	\$	321,039
19	2038	0.0682	0.0875	0.3113	0.6011	\$	321,124
20	2039	0.0682	0.0875	0.3113	0.6011	\$	321,209
Net Present Value (3\%)						\$	4,474,000
Net Present Value (7\%)						\$	2,964,000

2 See Appendix 3 for Fatal Accident Probability calculation
See Appendix 4 for Injury Accident Probability calculations
It is assumed that benefits will be realized starting Year 3 when construction is completed
Rail Table 2b. Value of Safety Benefits for Dutch Hill Road At-Grade Crossing in Build Scenario

Rail Table 2c. Value of Safety Benefits for Red Oak Road At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0349	0.0875	0.3113	0.6011	\$	
1	2020 (Construction)	0.0349	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0350	0.0875	0.3113	0.6011	\$	-
3	2022	0.0362	0.0875	0.3113	0.6011	\$	362,687
4	2023	0.0363	0.0875	0.3113	0.6011	\$	362,750
5	2024	0.0364	0.0875	0.3113	0.6011	\$	362,813
6	2025	0.0364	0.0875	0.3113	0.6011	\$	362,875
7	2026	0.0365	0.0875	0.3113	0.6011	\$	362,937
8	2027	0.0366	0.0875	0.3113	0.6011	\$	362,999
9	2028	0.0366	0.0875	0.3113	0.6011	\$	363,061
10	2029	0.0367	0.0875	0.3113	0.6011	\$	363,122
11	2030	0.0368	0.0875	0.3113	0.6011	\$	363,183
12	2031	0.0368	0.0875	0.3113	0.6011	\$	363,244
13	2032	0.0369	0.0875	0.3113	0.6011	\$	363,304
14	2033	0.0370	0.0875	0.3113	0.6011	\$	363,364
15	2034	0.0371	0.0875	0.3113	0.6011	\$	363,424
16	2035	0.0371	0.0875	0.3113	0.6011	\$	363,484
17	2036	0.0372	0.0875	0.3113	0.6011	\$	363,543
18	2037	0.0373	0.0875	0.3113	0.6011	\$	363,602
19	2038	0.0373	0.0875	0.3113	0.6011	\$	363,660
20	2039	0.0374	0.0875	0.3113	0.6011	\$	363,719
Net Present Value (3\%)						\$	4,571,000
Net Present Value (7\%)						\$	2,982,000

${ }^{1}$ See Appendix 2 for Crash Probability calculations
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations
It is assumed that benefits will be realized starting Year 3 when construction is completed

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0669	0.0875	0.3113	0.6011	\$	
1	2020 (Construction)	0.0670	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0671	0.0875	0.3113	0.6011	\$	-
3	2022	0.0672	0.0875	0.3113	0.6011	\$	389,930
4	2023	0.0673	0.0875	0.3113	0.6011	\$	390,031
5	2024	0.0674	0.0875	0.3113	0.6011	\$	390,133
6	2025	0.0676	0.0875	0.3113	0.6011	\$	390,235
7	2026	0.0677	0.0875	0.3113	0.6011	\$	390,336
8	2027	0.0678	0.0875	0.3113	0.6011	\$	390,438
9	2028	0.0679	0.0875	0.3113	0.6011	\$	390,540
10	2029	0.0680	0.0875	0.3113	0.6011	\$	390,642
11	2030	0.0670	0.0875	0.3113	0.6011	\$	389,760
12	2031	0.0671	0.0875	0.3113	0.6011	\$	389,861
13	2032	0.0672	0.0875	0.3113	0.6011	\$	389,963
14	2033	0.0674	0.0875	0.3113	0.6011	\$	390,064
15	2034	0.0675	0.0875	0.3113	0.6011	\$	390,166
16	2035	0.0676	0.0875	0.3113	0.6011	\$	390,268
17	2036	0.0677	0.0875	0.3113	0.6011	\$	390,370
18	2037	0.0678	0.0875	0.3113	0.6011	\$	390,471
19	2038	0.0679	0.0875	0.3113	0.6011	\$	390,573
20	2039	0.0681	0.0875	0.3113	0.6011	\$	390,675
Net Present Value (3\%)						\$	4,912,000
Net Present Value (7\%)						\$	3,204,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Rail Table 2e. Value of Safety Benefits for Carpenter Street At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0066	0.0736	0.2790	0.6474	\$	
1	2020 (Construction)	0.0066	0.0736	0.2790	0.6474	\$	-
2	2021 (Construction)	0.0067	0.0736	0.2790	0.6474	\$	\cdot
3	2022	0.0067	0.0736	0.2790	0.6474	\$	301,890
4	2023	0.0067	0.0736	0.2790	0.6474	\$	301,913
5	2024	0.0068	0.0736	0.2790	0.6474	\$	301,936
6	2025	0.0124	0.0736	0.2790	0.6474	\$	306,072
7	2026	0.0124	0.0736	0.2790	0.6474	\$	306,099
8	2027	0.0124	0.0736	0.2790	0.6474	\$	306,126
9	2028	0.0125	0.0736	0.2790	0.6474	\$	306,153
10	2029	0.0125	0.0736	0.2790	0.6474	\$	306,181
11	2030	0.0125	0.0736	0.2790	0.6474	\$	306,208
12	2031	0.0126	0.0736	0.2790	0.6474	\$	306,235
13	2032	0.0126	0.0736	0.2790	0.6474	\$	306,262
14	2033	0.0127	0.0736	0.2790	0.6474	\$	306,289
15	2034	0.0127	0.0736	0.2790	0.6474	\$	306,316
16	2035	0.0127	0.0736	0.2790	0.6474	\$	306,344
17	2036	0.0128	0.0736	0.2790	0.6474	\$	306,371
18	2037	0.0128	0.0736	0.2790	0.6474	\$	306,398
19	2038	0.0128	0.0736	0.2790	0.6474	\$	306,425
20	2039	0.0129	0.0736	0.2790	0.6474	\$	306,452
Net Present Value (3\%)							3,843,000
Net Present Value (7\%)						\$	2,505,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							

| Rail Table 2f. Value of Safety | Benefits for | Highway Z At-Grade Crossing in Build Scenario |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

See Appendix 2 for Crash Probability calculations
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations
See Appendix 4 for Injury Accident Probability calculation
It is assumed that benefits will be realized starting Year 3 when construction is complete

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0093	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0093	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0094	0.0875	0.3113	0.6011	\$	-
3	2022	0.0094	0.0875	0.3113	0.6011	\$	339,159
4	2023	0.0095	0.0875	0.3113	0.6011	\$	339,202
5	2024	0.0095	0.0875	0.3113	0.6011	\$	339,246
6	2025	0.0096	0.0875	0.3113	0.6011	\$	339,289
7	2026	0.0096	0.0875	0.3113	0.6011	\$	339,333
8	2027	0.0097	0.0875	0.3113	0.6011	\$	339,377
9	2028	0.0097	0.0875	0.3113	0.6011	\$	339,421
10	2029	0.0098	0.0875	0.3113	0.6011	\$	339,464
11	2030	0.0098	0.0875	0.3113	0.6011	\$	339,508
12	2031	0.0099	0.0875	0.3113	0.6011	\$	339,552
13	2032	0.0099	0.0875	0.3113	0.6011	\$	339,596
14	2033	0.0100	0.0875	0.3113	0.6011	\$	339,641
15	2034	0.0100	0.0875	0.3113	0.6011	\$	339,685
16	2035	0.0101	0.0875	0.3113	0.6011	\$	339,729
17	2036	0.0101	0.0875	0.3113	0.6011	\$	339,773
18	2037	0.0102	0.0875	0.3113	0.6011	\$	339,817
19	2038	0.0102	0.0875	0.3113	0.6011	\$	339,862
20	2039	0.0103	0.0875	0.3113	0.6011	\$	339,906
Net Present Value (3\%)						\$	4,273,000
Net Present Value (7\%)						\$	2,787,000
See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Rail Table 2h. Value of Safety Benefits for Hummingbird Lane At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0115	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0116	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0116	0.0875	0.3113	0.6011	\$	-
3	2022	0.0117	0.0875	0.3113	0.6011	\$	341,129
4	2023	0.0117	0.0875	0.3113	0.6011	\$	341,174
5	2024	0.0118	0.0875	0.3113	0.6011	\$	341,219
6	2025	0.0118	0.0875	0.3113	0.6011	\$	341,263
7	2026	0.0119	0.0875	0.3113	0.6011	\$	341,308
8	2027	0.0119	0.0875	0.3113	0.6011	\$	341,353
9	2028	0.0120	0.0875	0.3113	0.6011	\$	341,397
10	2029	0.0120	0.0875	0.3113	0.6011	\$	341,442
11	2030	0.0121	0.0875	0.3113	0.6011	\$	341,487
12	2031	0.0121	0.0875	0.3113	0.6011	\$	341,531
13	2032	0.0122	0.0875	0.3113	0.6011	\$	341,576
14	2033	0.0122	0.0875	0.3113	0.6011	\$	341,620
15	2034	0.0123	0.0875	0.3113	0.6011	\$	341,665
16	2035	0.0123	0.0875	0.3113	0.6011	\$	341,709
17	2036	0.0124	0.0875	0.3113	0.6011	\$	341,754
18	2037	0.0125	0.0875	0.3113	0.6011	\$	341,798
19	2038	0.0125	0.0875	0.3113	0.6011	\$	341,843
20	2039	0.0126	0.0875	0.3113	0.6011	\$	341,887
Net Present Value (3\%)						\$	4,298,000
Net Present Value (7\%)						\$	2,804,000

${ }^{2}$ See Appendix 2 for Crash Probability calculations
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed
Rail Table 2i. Value of Safety Benefits for Tandy Lane At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0448	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0449	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0449	0.0875	0.3113	0.6011	\$	-
3	2022	0.0450	0.0875	0.3113	0.6011	\$	370,401
4	2023	0.0450	0.0875	0.3113	0.6011	\$	370,451
5	2024	0.0451	0.0875	0.3113	0.6011	\$	370,501
6	2025	0.0452	0.0875	0.3113	0.6011	\$	370,550
7	2026	0.0452	0.0875	0.3113	0.6011	\$	370,600
8	2027	0.0453	0.0875	0.3113	0.6011	\$	370,650
9	2028	0.0453	0.0875	0.3113	0.6011	\$	370,700
10	2029	0.0454	0.0875	0.3113	0.6011	\$	370,750
11	2030	0.0454	0.0875	0.3113	0.6011	\$	370,801
12	2031	0.0455	0.0875	0.3113	0.6011	\$	370,851
13	2032	0.0456	0.0875	0.3113	0.6011	\$	370,901
14	2033	0.0456	0.0875	0.3113	0.6011	\$	370,952
15	2034	0.0457	0.0875	0.3113	0.6011	\$	371,002
16	2035	0.0457	0.0875	0.3113	0.6011	\$	371,053
17	2036	0.0458	0.0875	0.3113	0.6011	\$	371,103
18	2037	0.0458	0.0875	0.3113	0.6011	\$	371,154
19	2038	0.0459	0.0875	0.3113	0.6011	\$	371,205
20	2039	0.0460	0.0875	0.3113	0.6011	\$	371,256
Net Present Value (3\%)						\$	4,667,000
Net Present Value (7\%)						\$	3,044,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Year	Calendar Year	$\begin{gathered} \text { Crash } \\ \text { Probability }^{1} \end{gathered}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0084	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0084	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0084	0.0875	0.3113	0.6011	\$	\checkmark
3	2022	0.0085	0.0875	0.3113	0.6011	\$	338,288
4	2023	0.0085	0.0875	0.3113	0.6011	\$	338,319
5	2024	0.0085	0.0875	0.3113	0.6011	\$	338,349
6	2025	0.0086	0.0875	0.3113	0.6011	\$	338,380
7	2026	0.0086	0.0875	0.3113	0.6011	\$	338,411
8	2027	0.0086	0.0875	0.3113	0.6011	\$	338,441
9	2028	0.0087	0.0875	0.3113	0.6011	\$	338,472
10	2029	0.0087	0.0875	0.3113	0.6011	\$	338,503
11	2030	0.0087	0.0875	0.3113	0.6011	\$	338,534
12	2031	0.0088	0.0875	0.3113	0.6011	\$	338,565
13	2032	0.0088	0.0875	0.3113	0.6011	\$	338,596
14	2033	0.0088	0.0875	0.3113	0.6011	\$	338,627
15	2034	0.0089	0.0875	0.3113	0.6011	\$	338,658
16	2035	0.0089	0.0875	0.3113	0.6011	\$	338,689
17	2036	0.0089	0.0875	0.3113	0.6011	\$	338,720
18	2037	0.0090	0.0875	0.3113	0.6011	\$	338,752
19	2038	0.0090	0.0875	0.3113	0.6011	\$	338,783
20	2039	0.0091	0.0875	0.3113	0.6011	\$	338,814
Net Present Value (3\%)						\$	4,261,000
Net Present Value (7\%)						\$	2,779,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is is asumed that benefits will be realized starting Year 3 w							

Rail Table 2k. Value of Safety Benefits for Highway NN At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0285	0.0875	0.2877	0.6247	\$	-
1	2020 (Construction)	0.0286	0.0875	0.2877	0.6247	\$	-
2	2021 (Construction)	0.0286	0.0875	0.2877	0.6247	\$	-
3	2022	0.0287	0.0875	0.2877	0.6247	\$	331,290
4	2023	0.0287	0.0875	0.2877	0.6247	\$	331,332
5	2024	0.0288	0.0875	0.2877	0.6247	\$	331,375
6	2025	0.0288	0.0875	0.2877	0.6247	\$	331,417
7	2026	0.0289	0.0875	0.2877	0.6247	\$	331,459
8	2027	0.0289	0.0875	0.2877	0.6247	\$	331,502
9	2028	0.0290	0.0875	0.2877	0.6247	\$	331,544
10	2029	0.0290	0.0875	0.2877	0.6247	\$	331,586
11	2030	0.0290	0.0875	0.2877	0.6247	\$	331,629
12	2031	0.0291	0.0875	0.2877	0.6247	\$	331,671
13	2032	0.0291	0.0875	0.2877	0.6247	\$	331,714
14	2033	0.0292	0.0875	0.2877	0.6247	\$	331,756
15	2034	0.0292	0.0875	0.2877	0.6247	\$	331,799
16	2035	0.0293	0.0875	0.2877	0.6247	\$	331,841
17	2036	0.0293	0.0875	0.2877	0.6247	\$	331,884
18	2037	0.0294	0.0875	0.2877	0.6247	\$	331,926
19	2038	0.0294	0.0875	0.2877	0.6247	\$	331,969
20	2039	0.0295	0.0875	0.2877	0.6247	\$	332,012
Net Present Value (3\%)						\$	4,174,000
Net Present Value (7\%)						\$	2,723,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Rail Table 21. Value of Safety Benefits for W Box School Loop At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0524	0.0875	0.2877	0.6247	\$	
1	2020 (Construction)	0.0525	0.0875	0.2877	0.6247	\$	-
2	2021 (Construction)	0.0525	0.0875	0.2877	0.6247	\$	-
3	2022	0.0526	0.0875	0.2877	0.6247	\$	352,349
4	2023	0.0527	0.0875	0.2877	0.6247	\$	352,420
5	2024	0.0528	0.0875	0.2877	0.6247	\$	352,491
6	2025	0.0529	0.0875	0.2877	0.6247	\$	352,561
7	2026	0.0529	0.0875	0.2877	0.6247	\$	352,632
8	2027	0.0530	0.0875	0.2877	0.6247	\$	352,702
9	2028	0.0531	0.0875	0.2877	0.6247	\$	352,773
10	2029	0.0532	0.0875	0.2877	0.6247	\$	352,843
11	2030	0.0533	0.0875	0.2877	0.6247	\$	352,913
12	2031	0.0533	0.0875	0.2877	0.6247	\$	352,983
13	2032	0.0534	0.0875	0.2877	0.6247	\$	353,053
14	2033	0.0535	0.0875	0.2877	0.6247	\$	353,123
15	2034	0.0536	0.0875	0.2877	0.6247	\$	353,193
16	2035	0.0537	0.0875	0.2877	0.6247	\$	353,262
17	2036	0.0537	0.0875	0.2877	0.6247	\$	353,332
18	2037	0.0538	0.0875	0.2877	0.6247	\$	353,401
19	2038	0.0539	0.0875	0.2877	0.6247	\$	353,470
20	2039	0.0540	0.0875	0.3153	0.5971	\$	382,507
Net Present Value (3\%)						\$	4,457,000
Net Present Value (7\%)						\$	2,904,000

See Appendix 2 for Crash Probability calculations
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations
It is assumed that benefits will be realized starting Year 3 when construction is complete

Rail Table 2m. Value of Safety Benefits for Short Road At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0944	0.0875	0.2877	0.6247	\$	-
1	2020 (Construction)	0.0944	0.0875	0.2877	0.6247	\$	-
2	2021 (Construction)	0.0945	0.0875	0.2877	0.6247	\$	-
3	2022	0.0946	0.0875	0.2877	0.6247	\$	389,235
4	2023	0.0947	0.0875	0.2877	0.6247	\$	389,303
5	2024	0.0947	0.0875	0.2877	0.6247	\$	389,371
6	2025	0.0948	0.0875	0.2877	0.6247	\$	389,439
7	2026	0.0949	0.0875	0.2877	0.6247	\$	389,508
8	2027	0.0950	0.0875	0.2877	0.6247	S	389,577
9	2028	0.0951	0.0875	0.2877	0.6247	\$	389,645
10	2029	0.0951	0.0875	0.2877	0.6247	\$	389,715
11	2030	0.0952	0.0875	0.2877	0.6247	\$	389,784
12	2031	0.0953	0.0875	0.2877	0.6247	\$	389,853
13	2032	0.0954	0.0875	0.2877	0.6247	\$	389,923
14	2033	0.0955	0.0875	0.2877	0.6247	\$	389,993
15	2034	0.0955	0.0875	0.2877	0.6247	\$	390,063
16	2035	0.0956	0.0875	0.2877	0.6247	\$	390,133
17	2036	0.0957	0.0875	0.2877	0.6247	\$	390,204
18	2037	0.0958	0.0875	0.2877	0.6247	\$	390,274
19	2038	0.0959	0.0875	0.2877	0.6247	\$	390,345
20	2039	0.0959	0.0875	0.2877	0.6247		390,416
Net Present Value (3\%)						\$	4,906,000
Net Present Value (7\%)						\$	3,200,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Rail Table 2n. Value of Safety Benefits for E Box School Loop At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0303	0.0875	0.3113	0.6011	\$	
1	2020 (Construction)	0.0303	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0304	0.0875	0.3113	0.6011	\$	-
3	2022	0.0305	0.0875	0.3113	0.6011	\$	357,635
4	2023	0.0305	0.0875	0.3113	0.6011	\$	357,694
5	2024	0.0306	0.0875	0.3113	0.6011	\$	357,753
6	2025	0.0307	0.0875	0.3113	0.6011	\$	357,812
7	2026	0.0307	0.0875	0.3113	0.6011	\$	357,870
8	2027	0.0308	0.0875	0.3113	0.6011	\$	357,929
9	2028	0.0309	0.0875	0.3113	0.6011	\$	357,988
10	2029	0.0309	0.0875	0.3113	0.6011	\$	358,047
11	2030	0.0310	0.0875	0.3113	0.6011	\$	358,105
12	2031	0.0311	0.0875	0.3113	0.6011	\$	358,164
13	2032	0.0311	0.0875	0.3113	0.6011	\$	358,223
14	2033	0.0312	0.0875	0.3113	0.6011	\$	358,281
15	2034	0.0313	0.0875	0.3113	0.6011	\$	358,340
16	2035	0.0313	0.0875	0.3113	0.6011	\$	358,399
17	2036	0.0314	0.0875	0.3113	0.6011	\$	358,457
18	2037	0.0315	0.0875	0.3113	0.6011	\$	358,516
19	2038	0.0315	0.0875	0.3113	0.6011	\$	358,574
20	2039	0.0316	0.0875	0.3113	0.6011	\$	358,633
Net Present Value (3\%)						\$	4,507,000
Net Present Value (7\%)						\$	2,940,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Rail Table 20. Value of Safety Benefits for Oak Lawn Road At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0349	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0349	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0350	0.0875	0.3113	0.6011	\$	361,621
3	2022	0.0362	0.0875	0.3113	0.6011	\$	362,687
4	2023	0.0363	0.0875	0.3113	0.6011	\$	362,750
5	2024	0.0364	0.0875	0.3113	0.6011	\$	362,813
6	2025	0.0364	0.0875	0.3113	0.6011	\$	362,875
7	2026	0.0365	0.0875	0.3113	0.6011	\$	362,937
8	2027	0.0366	0.0875	0.3113	0.6011	\$	362,999
9	2028	0.0366	0.0875	0.3113	0.6011	\$	363,061
10	2029	0.0367	0.0875	0.3113	0.6011	\$	363,122
11	2030	0.0368	0.0875	0.3113	0.6011	\$	363,183
12	2031	0.0368	0.0875	0.3113	0.6011	\$	363,244
13	2032	0.0369	0.0875	0.3113	0.6011	\$	363,304
14	2033	0.0370	0.0875	0.3113	0.6011	\$	363,364
15	2034	0.0371	0.0875	0.3113	0.6011	\$	363,424
16	2035	0.0371	0.0875	0.3113	0.6011	\$	363,484
17	2036	0.0372	0.0875	0.3113	0.6011	\$	363,543
18	2037	0.0373	0.0875	0.3113	0.6011	\$	363,602
19	2038	0.0373	0.0875	0.3113	0.6011	\$	363,660
20	2039	0.0374	0.0875	0.3113	0.6011	\$	363,719
Net Present Value (3\%)						\$	4,902,000
Net Present Value (7\%)						\$	3,277,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability	Value of Reduction in Crashes, Injuries, and Fatalities ${ }^{4}$
0	2019	0.0641	0.0875	0.3113	0.6011	\$
1	2020 (Construction)	0.0642	0.0875	0.3113	0.6011	\$.
2	2021 (Construction)	0.0643	0.0875	0.3113	0.6011	\$
3	2022	0.0643	0.0875	0.3113	0.6011	\$ 387,408
4	2023	0.0644	0.0875	0.3113	0.6011	\$ 387,469
5	2024	0.0645	0.0875	0.3113	0.6011	\$ 387,530
6	2025	0.0645	0.0875	0.3113	0.6011	\$ 387,590
7	2026	0.0646	0.0875	0.3113	0.6011	\$ 387,651
8	2027	0.0647	0.0875	0.3113	0.6011	\$ 387,712
9	2028	0.0648	0.0875	0.3113	0.6011	\$ 387,773
10	2029	0.0648	0.0875	0.3113	0.6011	\$ 387,834
11	2030	0.0649	0.0875	0.3113	0.6011	\$ 387,895
12	2031	0.0650	0.0875	0.3113	0.6011	\$ 387,957
13	2032	0.0650	0.0875	0.3113	0.6011	\$ 388,018
14	2033	0.0651	0.0875	0.3113	0.6011	\$ 388,079
15	2034	0.0652	0.0875	0.3113	0.6011	\$ 388,141
16	2035	0.0652	0.0875	0.3113	0.6011	\$ 388,202
17	2036	0.0653	0.0875	0.3113	0.6011	\$ 388,264
18	2037	0.0654	0.0875	0.3113	0.6011	\$ 388,326
19	2038	0.0655	0.0875	0.3113	0.6011	\$ 388,387
20	2039	0.0655	0.0875	0.3113	0.6011	\$ 388,449
Net Present Value (3\%)						\$ 4,882,000
				Net Pr	ent Value (7\%)	\$ 3,184,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations						
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations						
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations						
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed						

Rail Table 2q. Value of Safety Benefits for Mineral Road At-Grade Crossing in Build Scenario

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0119	0.0875	0.3113	0.6011	\$	-
1	2020 (Construction)	0.0120	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0120	0.0875	0.3113	0.6011	\$	-
3	2022	0.0121	0.0875	0.3113	0.6011	\$	341,449
4	2023	0.0121	0.0875	0.3113	0.6011	\$	341,493
5	2024	0.0122	0.0875	0.3113	0.6011		341,538
6	2025	0.0122	0.0875	0.3113	0.6011	\$	341,583
7	2026	0.0123	0.0875	0.3113	0.6011	\$	341,627
8	2027	0.0123	0.0875	0.3113	0.6011	\$	341,672
9	2028	0.0124	0.0875	0.3113	0.6011	\$	341,716
10	2029	0.0124	0.0875	0.3113	0.6011	\$	341,760
11	2030	0.0125	0.0875	0.3113	0.6011	\$	341,805
12	2031	0.0125	0.0875	0.3113	0.6011	\$	341,849
13	2032	0.0126	0.0875	0.3113	0.6011	\$	341,893
14	2033	0.0126	0.0875	0.3113	0.6011	\$	341,938
15	2034	0.0127	0.0875	0.3113	0.6011	\$	341,982
16	2035	0.0127	0.0875	0.3113	0.6011	\$	342,026
17	2036	0.0128	0.0875	0.3113	0.6011	\$	342,070
18	2037	0.0128	0.0875	0.3113	0.6011	\$	342,114
19	2038	0.0129	0.0875	0.3113	0.6011	\$	342,158
20	2039	0.0129	0.0875	0.3113	0.6011	\$	342,202
Net Present Value (3\%)						\$	4,302,000
Net Present Value (7\%)						\$	2,806,000
${ }^{1}$ See Appendix 2 for Crash Probability calculations							
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations							
${ }^{3}$ See Appendix 4 for Injury Accident Probability calculations							
${ }^{4}$ It is assumed that benefits will be realized starting Year 3 when construction is completed							

Year	Calendar Year	Crash Probability ${ }^{1}$	Fatal Accident Probability ${ }^{2}$	Injury Accident Probability ${ }^{3}$	Property Damage Probability		Reduction in Injuries, and alities ${ }^{4}$
0	2019	0.0543	0.0875	0.3113	0.6011	\$	
1	2020 (Construction)	0.0543	0.0875	0.3113	0.6011	\$	-
2	2021 (Construction)	0.0544	0.0875	0.3113	0.6011	\$	-
3	2022	0.0545	0.0875	0.3113	0.6011	\$	378,752
4	2023	0.0546	0.0875	0.3113	0.6011	\$	378,819
5	2024	0.0546	0.0875	0.3113	0.6011	\$	378,887
6	2025	0.0547	0.0875	0.3113	0.6011	\$	378,955
7	2026	0.0548	0.0875	0.3113	0.6011	\$	379,022
8	2027	0.0549	0.0875	0.3113	0.6011	\$	379,089
9	2028	0.0550	0.0875	0.3113	0.6011	\$	379,156
10	2029	0.0550	0.0875	0.3113	0.6011	\$	379,223
11	2030	0.0551	0.0875	0.3113	0.6011	\$	379,290
12	2031	0.0552	0.0875	0.3113	0.6011	\$	379,356
13	2032	0.0553	0.0875	0.3113	0.6011	\$	379,422
14	2033	0.0553	0.0875	0.3113	0.6011	\$	379,489
15	2034	0.0554	0.0875	0.3113	0.6011	\$	379,555
16	2035	0.0555	0.0875	0.3113	0.6011	\$	379,620
17	2036	0.0556	0.0875	0.3113	0.6011	\$	379,686
18	2037	0.0556	0.0875	0.3113	0.6011	\$	379,751
19	2038	0.0557	0.0875	0.3113	0.6011	\$	379,817
20	2039	0.0558	0.0875	0.3113	0.6011	\$	379,882
Net Present Value (3\%)						\$	4,774,000
Net Present Value (7\%)						\$	3,114,000

See Appendix 2 for Crash Probability calculations
${ }^{2}$ See Appendix 3 for Fatal Accident Probability calculations
See Appendix 4 for Injury Accident Probability calculation
It is assumed that benefits will be realized starting Year 3 when constrution is complete

ROGERSVILLE
Rail Table 3b. Value of Emissions Reduction for Idling Vehicles in Build Scenario

Period	Year	Total Average Daily Passenger Vehicular Traffic Delay (min)	Total Average Daily Truck Traffic Delay (min)	VOC	Vehicles NOX	PM ${ }_{2.5}$	Cost of VOC	ssions for NOX	rucks $P M_{2.5}$	Total Value of Emissions Reduction ${ }^{1}$
0	2019	21	7	\$1	\$4	N/A	\$0	\$14	\$20	\$0
1	2020	22	7	\$1	\$4	N/A	\$0	\$14	\$21	\$0
2	2021	23	8	\$1	\$5	N/A	\$0	\$15	\$22	\$0
3	2022	24	8	\$1	\$5	N/A	\$0	\$16	\$23	\$0
4	2023	25	8	\$1	\$5	N/A	\$0	\$16	\$24	\$0
5	2024	26	9	\$1	\$5	N/A	\$0	\$17	\$25	\$0
6	2025	27	9	\$1	\$6	N/A	\$0	\$18	\$27	\$0
7	2026	29	10	\$1	\$6	N/A	\$0	\$19	\$28	\$0
8	2027	30	10	\$1	\$6	N/A	\$0	\$20	\$29	\$0
9	2028	32	11	\$1	\$6	N/A	\$1	\$21	\$31	\$0
10	2029	33	11	\$1	\$7	N/A	\$1	\$22	\$32	\$0
11	2030	35	12	\$1	\$7	N/A	\$1	\$23	\$34	\$0
12	2031	37	12	\$1	\$7	N/A	\$1	\$24	\$35	\$0
13	2032	38	13	\$1	\$8	N/A	\$1	\$25	\$37	\$0
14	2033	40	13	\$2	\$8	N/A	\$1	\$26	\$39	\$0
15	2034	42	14	\$2	\$9	N/A	\$1	\$27	\$41	\$0
16	2035	44	15	\$2	\$9	N/A	\$1	\$29	\$42	\$0
17	2036	46	15	\$2	\$9	N/A	\$1	\$30	\$45	\$0
18	2037	49	16	\$2	\$10	N/A	\$1	\$31	\$47	\$0
19	2038	51	17	\$2	\$10	N/A	\$1	\$33	\$49	\$0
20	2039	54	18	\$2	\$11	N/A	\$1	\$35	\$51	\$0
Net Present Value (3\%)										
Net Present Value (7\%)										\$0

${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

FORDLAND
Rail Table 3c. Value of Emissions Reduction for Idling Vehicles in Build Scenario

Period	Year	Total Average Daily Passenger Vehicular Traffic Delay (min)	Total Average Daily Truck Traffic Delay (min)	Cost of Em VOC	ions for ehicles NOx	senger $P M_{2.5}$	Cost of voc	sions for NOX	rucks PM ${ }_{2.5}$	Total Value of Emissions Reduction ${ }^{1}$
0	2019	558	187	\$21	\$114	N/A	\$9	\$367	\$545	\$0
1	2020	586	196	\$22	\$120	N/A	\$9	\$385	\$571	\$0
2	2021	614	205	\$23	\$126	N/A	\$10	\$403	\$598	\$0
3	2022	644	215	\$24	\$132	N/A	\$10	\$423	\$627	\$1,216
4	2023	676	225	\$25	\$138	N/A	\$11	\$443	\$657	\$1,274
5	2024	709	236	\$27	\$145	N/A	\$11	\$464	\$688	\$1,336
6	2025	744	247	\$28	\$152	N/A	\$12	\$486	\$721	\$1,400
7	2026	780	259	\$29	\$160	N/A	\$13	\$510	\$756	\$1,467
8	2027	818	272	\$31	\$167	N/A	\$13	\$534	\$792	\$1,537
9	2028	858	285	\$32	\$176	N/A	\$14	\$560	\$830	\$1,611
10	2029	900	298	\$34	\$184	N/A	\$14	\$586	\$870	\$1,689
11	2030	944	313	\$36	\$193	N/A	\$15	\$615	\$911	\$1,770
12	2031	990	328	\$37	\$203	N/A	\$16	\$644	\$955	\$1,855
13	2032	1,039	343	\$39	\$213	N/A	\$17	\$675	\$1,001	\$1,944
14	2033	1,090	360	\$41	\$223	N/A	\$17	\$707	\$1,049	\$2,037
15	2034	1,143	377	\$43	\$234	N/A	\$18	\$741	\$1,099	\$2,135
16	2035	1,199	395	\$45	\$245	N/A	\$19	\$777	\$1,152	\$2,238
17	2036	1,258	414	\$47	\$257	N/A	\$20	\$814	\$1,207	\$2,345
18	2037	1,319	434	\$50	\$270	N/A	\$21	\$853	\$1,265	\$2,458
19	2038	1,384	455	\$52	\$283	N/A	\$22	\$894	\$1,325	\$2,576
20	2039	1,452	476	\$55	\$297	N/A	\$23	\$936	\$1,389	\$2,700
Net Present Value (3\%)										\$23,000
Net Present Value (7\%)										\$14,000

[^14]DIGGINS
Rail Table 3d. Value of Emissions Reduction for Idling Vehicles in Build Scenario

Period	Year	Total Average Daily Passenger Vehicular Traffic Delay (min)	Total Average Daily Truck Traffic Delay (min)	Cost of Emissions for Passenger Vehicles			Cost of Emissions for Trucks			Total Value of Emissions Reduction ${ }^{1}$
				VOC	NOx	$P M_{2.5}$	VOC	NOx	PM 2.5	
0	2019	184	62	\$7	\$38	N/A	\$3	\$121	\$180	\$0
1	2020	193	65	\$7	\$40	N/A	\$3	\$127	\$188	\$0
2	2021	203	68	\$8	\$41	N/A	\$3	\$133	\$197	\$0
3	2022	213	71	\$8	\$43	N/A	\$3	\$139	\$207	\$0
4	2023	223	74	\$8	\$46	N/A	\$4	\$146	\$217	\$0
5	2024	234	78	\$9	\$48	N/A	\$4	\$153	\$227	\$0
6	2025	245	82	\$9	\$50	N/A	\$4	\$160	\$238	\$0
7	2026	257	86	\$10	\$53	N/A	\$4	\$168	\$249	\$0
8	2027	270	90	\$10	\$55	N/A	\$4	\$176	\$261	\$0
9	2028	283	94	\$11	\$58	N/A	\$5	\$185	\$274	\$0
10	2029	297	98	\$11	\$61	N/A	\$5	\$193	\$287	\$557
11	2030	311	103	\$12	\$64	N/A	\$5	\$203	\$301	\$584
12	2031	327	108	\$12	\$67	N/A	\$5	\$212	\$315	\$612
13	2032	343	113	\$13	\$70	N/A	\$5	\$223	\$330	\$641
14	2033	359	119	\$14	\$74	N/A	\$6	\$233	\$346	\$672
15	2034	377	124	\$14	\$77	N/A	\$6	\$244	\$363	\$704
16	2035	396	130	\$15	\$81	N/A	\$6	\$256	\$380	\$738
17	2036	415	137	\$16	\$85	N/A	\$7	\$268	\$398	\$774
18	2037	435	143	\$16	\$89	N/A	\$7	\$281	\$417	\$811
19	2038	456	150	\$17	\$93	N/A	\$7	\$295	\$437	\$850
20	2039	479	157	\$18	\$98	N/A	\$8	\$309	\$458	\$891
Net Present Value (3\%)Net Present Value (7\%)										\$5,000
										\$3,000

${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

SEYMOUR
Rail Table 3e. Value of Emissions Reduction for Idling Vehicles in Build Scenario

Period	Year	Total Average Daily Passenger Vehicular Traffic Delay (min)	Total Average Daily Truck Traffic Delay (min)	Cost of Emissions for Passenger Vehicles			Cost of Emissions for Trucks			Total Value of Emissions Reduction ${ }^{1}$
				VOC	NOx	PM ${ }_{2.5}$	VOC	NOx	PM ${ }_{2.5}$	
0	2019	76	25	\$3	\$16	N/A	\$1	\$50	\$74	\$0
1	2020	80	27	\$3	\$16	N/A	\$1	\$52	\$78	\$0
2	2021	83	28	\$3	\$17	N/A	\$1	\$55	\$81	\$0
3	2022	88	29	\$3	\$18	N/A	\$1	\$57	\$85	\$0
4	2023	92	31	\$3	\$19	N/A	\$1	\$60	\$89	\$0
5	2024	96	32	\$4	\$20	N/A	\$2	\$63	\$94	\$0
6	2025	101	34	\$4	\$21	N/A	\$2	\$66	\$98	\$0
7	2026	106	35	\$4	\$22	N/A	\$2	\$69	\$103	\$0
8	2027	111	37	\$4	\$23	N/A	\$2	\$73	\$108	\$0
9	2028	117	39	\$4	\$24	N/A	\$2	\$76	\$113	\$0
10	2029	122	41	\$5	\$25	N/A	\$2	\$80	\$118	\$230
11	2030	128	42	\$5	\$26	N/A	\$2	\$84	\$124	\$241
12	2031	135	45	\$5	\$28	N/A	\$2	\$88	\$130	\$252
13	2032	141	47	\$5	\$29	N/A	\$2	\$92	\$136	\$264
14	2033	148	49	\$6	\$30	N/A	\$2	\$96	\$143	\$277
15	2034	155	51	\$6	\$32	N/A	\$2	\$101	\$149	\$290
16	2035	163	54	\$6	\$33	N/A	\$3	\$106	\$157	\$304
17	2036	171	56	\$6	\$35	N/A	\$3	\$111	\$164	\$319
18	2037	179	59	\$7	\$37	N/A	\$3	\$116	\$172	\$334
19	2038	188	62	\$7	\$38	N/A	\$3	\$121	\$180	\$350
20	2039	197	65	\$7	\$40	N/A	\$3	\$127	\$189	\$367
Net Present Value (3\%)										\$2,000
Net Present Value (7\%)										\$1,000

[^15]ROGERSVILLE
Rail Table 4b. Value of Reduced Operations and Maintenance Expenses

Year	Calendar Year	No Build Scenario At-Grade Crossing Maintenance (BNSF)	Build Scenario At-Grade Crossing Maintenance (BNSF)	Total O\&M Savings
0	2019	\$10,000	\$10,000	\$0
1	2020	\$10,300	\$10,300	\$0
2	2021	\$10,609	\$10,609	\$0
3	2022	\$10,927	\$10,927	\$0
4	2023	\$11,255	\$11,255	\$0
5	2024	\$11,593	\$11,593	\$0
6	2025	\$11,941	\$11,941	\$0
7	2026	\$12,299	\$12,299	\$0
8	2027	\$12,668	\$12,668	\$0
9	2028	\$13,048	\$13,048	\$0
10	2029	\$13,439	\$13,439	\$0
11	2030	\$13,842	\$13,842	\$0
12	2031	\$14,258	\$14,258	\$0
13	2032	\$14,685	\$14,685	\$0
14	2033	\$15,126	\$15,126	\$0
15	2034	\$15,580	\$15,580	\$0
16	2035	\$16,047	\$16,047	\$0
17	2036	\$16,528	\$16,528	\$0
18	2037	\$17,024	\$17,024	\$0
19	2038	\$17,535	\$17,535	\$0
20	2039	\$18,061	\$18,061	\$0
Net Present Value (3\%) \$				
Net Present Value (7\%) \$0				

${ }^{1}$ Assumes no operations and maintenance costs until Year 3 in Build Scenario

FORDLAND
Rail Table 4c. Value of Reduced Operations and Maintenance Expenses

Year	Calendar Year	No Build Scenario At-Grade Crossing Maintenance (BNSF)	Build Scenario At-Grade Crossing Maintenance (BNSF)	Total O\&M Savings
0	2019	\$90,000	\$90,000	\$0
1	2020	\$92,700	\$92,700	\$0
2	2021	\$95,481	\$95,481	\$0
3	2022	\$98,345	\$0	\$98,345
4	2023	\$101,296	\$0	\$101,296
5	2024	\$104,335	\$0	\$104,335
6	2025	\$107,465	\$0	\$107,465
7	2026	\$110,689	\$0	\$110,689
8	2027	\$114,009	\$0	\$114,009
9	2028	\$117,430	\$0	\$117,430
10	2029	\$120,952	\$0	\$120,952
11	2030	\$124,581	\$0	\$124,581
12	2031	\$128,318	\$0	\$128,318
13	2032	\$132,168	\$0	\$132,168
14	2033	\$136,133	\$0	\$136,133
15	2034	\$140,217	\$0	\$140,217
16	2035	\$144,424	\$0	\$144,424
17	2036	\$148,756	\$0	\$148,756
18	2037	\$153,219	\$0	\$153,219
19	2038	\$157,816	\$0	\$157,816
20	2039	\$162,550	\$0	\$162,550
Net Present Value (3\%)				\$1,573,000
Net Present Value (7\%)				\$996,000

[^16]DIGGINS
Rail Table 4d. Value of Reduced Operations and Maintenance Expenses

Year	Calendar Year	No Build Scenario At-Grade Crossing Maintenance (BNSF)	Build Scenario At-Grade Crossing Maintenance (BNSF)	Total O\&M Savings
0	2019	\$40,000	\$40,000	\$0
1	2020	\$41,200	\$41,200	\$0
2	2021	\$42,436	\$42,436	\$0
3	2022	\$43,709	\$0	\$43,709
4	2023	\$45,020	\$0	\$45,020
5	2024	\$46,371	\$0	\$46,371
6	2025	\$47,762	\$0	\$47,762
7	2026	\$49,195	\$0	\$49,195
8	2027	\$50,671	\$0	\$50,671
9	2028	\$52,191	\$0	\$52,191
10	2029	\$53,757	\$0	\$53,757
11	2030	\$55,369	\$0	\$55,369
12	2031	\$57,030	\$0	\$57,030
13	2032	\$58,741	\$0	\$58,741
14	2033	\$60,504	\$0	\$60,504
15	2034	\$62,319	\$0	\$62,319
16	2035	\$64,188	\$0	\$64,188
17	2413	\$66,114	\$0	\$66,114
18	2037	\$68,097	\$0	\$68,097
19	2038	\$70,140	\$0	\$70,140
20	2039	\$72,244	\$0	\$72,244
Net Present Value (3\%)				\$699,000
Net Present Value (7\%)				\$443,000

${ }^{1}$ Assumes no operations and maintenance costs until Year 3 in Build Scenario

SEYMOUR
Rail Table 4e. Value of Reduced Operations and Maintenance Expenses

Year	Calendar Year	No Build Scenario At-Grade Crossing Maintenance (BNSF)	Build Scenario At-Grade Crossing Maintenance (BNSF)	Total O\&M Savings
0	2019	\$30,000	\$30,000	\$0
1	2020	\$30,900	\$30,900	\$0
2	2021	\$31,827	\$31,827	\$0
3	2022	\$32,782	\$32,782	\$0
4	2023	\$33,765	\$33,765	\$0
5	2024	\$34,778	\$34,778	\$0
6	2025	\$35,822	\$35,822	\$0
7	2026	\$36,896	\$36,896	\$0
8	2027	\$38,003	\$38,003	\$0
9	2028	\$39,143	\$39,143	\$0
10	2029	\$40,317	\$13,439	\$26,878
11	2030	\$41,527	\$13,842	\$27,685
12	2031	\$42,773	\$14,257	\$28,515
13	2032	\$44,056	\$14,685	\$29,371
14	2033	\$45,378	\$15,126	\$30,252
15	2034	\$46,739	\$15,579	\$31,160
16	2035	\$48,141	\$16,047	\$32,094
17	2036	\$49,585	\$16,528	\$33,057
18	2037	\$51,073	\$17,024	\$34,049
19	2038	\$52,605	\$17,535	\$35,070
20	2039	\$54,183	\$18,061	\$36,122
Net Present Value (3\%)				\$214,000
Net Present Value (7\%)				\$117,000

[^17]| Year | Calendar Year | ADT | Daily Crossings | Formula Constant (K) | Exposure
 Factor (EI) | Day Through Trains Factor (DT) | Max Tiemtable Speed Factor (MS) | Main
 Tracks
 Factor (MT) | Highway Paved Factor (HP) | Highway Type Factor (HT) | Highway Lane Factor (HL) | Unnormalized Crash Prediction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2019 | 367 | 27 | 0.001088 | 29.0379 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0469 |
| 1 | 2020 | 369 | 27 | 0.001088 | 29.2284 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0472 |
| 2 | 2021 | 372 | 28 | 0.001088 | 29.4202 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0475 |
| 3 | 2022 | 374 | 28 | 0.001088 | 29.6133 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0478 |
| 4 | 2023 | 376 | 29 | 0.001088 | 29.8076 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0481 |
| 5 | 2024 | 378 | 29 | 0.001088 | 30.0032 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0484 |
| 6 | 2025 | 381 | 30 | 0.001088 | 30.2001 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0488 |
| 7 | 2026 | 383 | 30 | 0.001088 | 30.3983 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0491 |
| 8 | 2027 | 385 | 30 | 0.001088 | 30.5977 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0494 |
| 9 | 2028 | 388 | 31 | 0.001088 | 30.7985 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0497 |
| 10 | 2029 | 390 | 31 | 0.001088 | 31.0006 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0501 |
| 11 | 2030 | 392 | 32 | 0.001088 | 31.2041 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0504 |
| 12 | 2031 | 395 | 32 | 0.001088 | 31.4088 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0507 |
| 13 | 2032 | 397 | 33 | 0.001088 | 31.6149 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0510 |
| 14 | 2033 | 400 | 33 | 0.001088 | 31.8224 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0514 |
| 15 | 2034 | 402 | 34 | 0.001088 | 32.0312 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0517 |
| 16 | 2035 | 405 | 34 | 0.001088 | 32.2414 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0521 |
| 17 | 2036 | 407 | 35 | 0.001088 | 32.4530 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0524 |
| 18 | 2037 | 410 | 35 | 0.001088 | 32.6659 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0527 |
| 19 | 2038 | 412 | 36 | 0.001088 | 32.8803 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0531 |
| 20 | 2039 | 415 | 36 | 0.001088 | 33.0961 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0534 |

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT Basic Accident Prediction Model for Mineral Road At-Grade Crossing

Year	Calendar Year	ADT	$\begin{aligned} & \text { Daily } \\ & \text { Crossings } \end{aligned}$	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	$\begin{gathered} \text { Main } \\ \text { Tracks } \\ \text { Factor }(M T) \end{gathered}$	Highway Paved Factor (HP)	Highway Type Factor (HT)	\qquad Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	40	27	0.002268	17.5552	1.83	1.47	1.23	1.00	0.61	1.00	0.0799
1	2020	40	27	0.002268	17.6785	1.83	1.47	1.23	1.00	0.61	1.00	0.0807
2	2021	40	28	0.002268	17.8026	1.83	1.47	1.23	1.00	0.61	1.00	0.0814
3	2022	41	28	0.002268	17.9276	1.84	1.47	1.23	1.00	0.61	1.00	0.0821
4	2023	41	29	0.002268	18.0535	1.84	1.47	1.23	1.00	0.61	1.00	0.0829
5	2024	41	29	0.002268	18.1803	1.85	1.47	1.23	1.00	0.61	1.00	0.0836
6	2025	41	30	0.002268	18.3080	1.85	1.47	1.23	1.00	0.61	1.00	0.0844
7	2026	42	30	0.002268	18.4365	1.85	1.47	1.23	1.00	0.61	1.00	0.0851
8	2027	42	30	0.002268	18.5660	1.86	1.47	1.23	1.00	0.61	1.00	0.0859
9	2028	42	31	0.002268	18.6963	1.86	1.47	1.23	1.00	0.61	1.00	0.0867
10	2029	43	31	0.002268	18.8276	1.86	1.47	1.23	1.00	0.61	1.00	0.0874
11	2030	43	32	0.002268	18.9598	1.87	1.47	1.23	1.00	0.61	1.00	0.0882
12	2031	43	32	0.002268	19.0930	1.87	1.47	1.23	1.00	0.61	1.00	0.0890
13	2032	43	33	0.002268	19.2270	1.87	1.47	1.23	1.00	0.61	1.00	0.0898
14	2033	44	33	0.002268	19.3620	1.88	1.47	1.23	1.00	0.61	1.00	0.0906
15	2034	44	34	0.002268	19.4980	1.88	1.47	1.23	1.00	0.61	1.00	0.0915
16	2035	44	34	0.002268	19.6349	1.89	1.47	1.23	1.00	0.61	1.00	0.0923
17	2036	44	35	0.002268	19.7728	1.89	1.47	1.23	1.00	0.61	1.00	0.0931
18	2037	45	35	0.002268	19.9116	1.89	1.47	1.23	1.00	0.61	1.00	0.0939
19	2038	45	36	0.002268	20.0515	1.90	1.47	1.23	1.00	0.61	1.00	0.0948
20	2039	45	36	0.002268	20.1923	1.90	1.47	1.23	1.00	0.61	1.00	0.0956

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

USDOT Basic Accident Prediction Model for Dewberry Road At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	136	27	0.002268	26.3987	1.83	1.47	1.23	1.00	0.61	1.00	0.1202
1	2020	137	27	0.002268	26.5841	1.83	1.47	1.23	1.00	0.61	1.00	0.1213
2	2021	138	28	0.002268	26.7708	1.83	1.47	1.23	1.00	0.61	1.00	0.1224
3	2022	139	28	0.002268	26.9588	1.84	1.47	1.23	1.00	0.61	1.00	0.1235
4	2023	139	29	0.002268	27.1481	1.84	1.47	1.23	1.00	0.61	1.00	0.1246
5	2024	140	29	0.002268	27.3388	1.85	1.47	1.23	1.00	0.61	1.00	0.1257
6	2025	141	30	0.002268	27.5308	1.85	1.47	1.23	1.00	0.61	1.00	0.1269
7	2026	142	30	0.002268	27.7241	1.85	1.47	1.23	1.00	0.61	1.00	0.1280
8	2027	143	30	0.002268	27.9188	1.86	1.47	1.23	1.00	0.61	1.00	0.1292
9	2028	144	31	0.002268	28.1149	1.86	1.47	1.23	1.00	0.61	1.00	0.1303
10	2029	145	31	0.002268	28.3123	1.86	1.47	1.23	1.00	0.61	1.00	0.1315
11	2030	145	32	0.002268	28.5111	1.87	1.47	1.23	1.00	0.61	1.00	0.1327
12	2031	146	32	0.002268	28.7114	1.87	1.47	1.23	1.00	0.61	1.00	0.1339
13	2032	147	33	0.002268	28.9130	1.87	1.47	1.23	1.00	0.61	1.00	0.1351
14	2033	148	33	0.002268	29.1160	1.88	1.47	1.23	1.00	0.61	1.00	0.1363
15	2034	149	34	0.002268	29.3205	1.88	1.47	1.23	1.00	0.61	1.00	0.1375
16	2035	150	34	0.002268	29.5264	1.89	1.47	1.23	1.00	0.61	1.00	0.1388
17	2036	151	35	0.002268	29.7338	1.89	1.47	1.23	1.00	0.61	1.00	0.1400
18	2037	152	35	0.002268	29.9426	1.89	1.47	1.23	1.00	0.61	1.00	0.1413
19	2038	153	36	0.002268	30.1528	1.90	1.47	1.23	1.00	0.61	1.00	0.1425
20	2039	154	36	0.002268	30.3646	1.90	1.47	1.23	1.00	0.61	1.00	0.1438

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	71	27	0.001088	17.4052	1.00	1.00	1.34	1.00	1.00	1.11	0.0281
1	2020	71	27	0.001088	17.5194	1.00	1.00	1.34	1.00	1.00	1.11	0.0283
2	2021	72	28	0.001088	17.6343	1.00	1.00	1.34	1.00	1.00	1.11	0.0285
3	2022	72	28	0.001088	17.7500	1.00	1.00	1.34	1.00	1.00	1.11	0.0287
4	2023	73	29	0.001088	17.8665	1.00	1.00	1.34	1.00	1.00	1.11	0.0288
5	2024	73	29	0.001088	17.9837	1.00	1.00	1.34	1.00	1.00	1.11	0.0290
6	2025	74	30	0.001088	18.1017	1.00	1.00	1.34	1.00	1.00	1.11	0.0292
7	2026	74	30	0.001088	18.2205	1.00	1.00	1.34	1.00	1.00	1.11	0.0294
8	2027	75	30	0.001088	18.3401	1.00	1.00	1.34	1.00	1.00	1.11	0.0296
9	2028	75	31	0.001088	18.4604	1.00	1.00	1.34	1.00	1.00	1.11	0.0298
10	2029	75	31	0.001088	18.5815	1.00	1.00	1.34	1.00	1.00	1.11	0.0300
11	2030	76	32	0.001088	18.7035	1.00	1.00	1.34	1.00	1.00	1.11	0.0302
12	2031	76	32	0.001088	18.8262	1.00	1.00	1.34	1.00	1.00	1.11	0.0304
13	2032	77	33	0.001088	18.9497	1.00	1.00	1.34	1.00	1.00	1.11	0.0306
14	2033	77	33	0.001088	19.0741	1.00	1.00	1.34	1.00	1.00	1.11	0.0308
15	2034	78	34	0.001088	19.1992	1.00	1.00	1.34	1.00	1.00	1.11	0.0310
16	2035	78	34	0.001088	19.3252	1.00	1.00	1.34	1.00	1.00	1.11	0.0312
17	2036	79	35	0.001088	19.4520	1.00	1.00	1.34	1.00	1.00	1.11	0.0314
18	2037	79	35	0.001088	19.5797	1.00	1.00	1.34	1.00	1.00	1.11	0.0316
19	2038	80	36	0.001088	19.7081	1.00	1.00	1.34	1.00	1.00	1.11	0.0318
20	2039	80	36	0.001088	19.8375	1.00	1.00	1.34	1.00	1.00	1.11	0.0320

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT Basic Accident Prediction Model for E Box School Loop At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	27	27	0.002268	15.3996	1.83	1.47	1.23	1.00	0.61	1.00	0.0701
1	2020	27	27	0.002268	15.5077	1.83	1.47	1.23	1.00	0.61	1.00	0.0708
2	2021	27	28	0.002268	15.6166	1.83	1.47	1.23	1.00	0.61	1.00	0.0714
3	2022	27	28	0.002268	15.7263	1.84	1.47	1.23	1.00	0.61	1.00	0.0720
4	2023	28	29	0.002268	15.8367	1.84	1.47	1.23	1.00	0.61	1.00	0.0727
5	2024	28	29	0.002268	15.9479	1.85	1.47	1.23	1.00	0.61	1.00	0.0733
6	2025	28	30	0.002268	16.0598	1.85	1.47	1.23	1.00	0.61	1.00	0.0740
7	2026	28	30	0.002268	16.1726	1.85	1.47	1.23	1.00	0.61	1.00	0.0747
8	2027	28	30	0.002268	16.2862	1.86	1.47	1.23	1.00	0.61	1.00	0.0753
9	2028	29	31	0.002268	16.4005	1.86	1.47	1.23	1.00	0.61	1.00	0.0760
10	2029	29	31	0.002268	16.5157	1.86	1.47	1.23	1.00	0.61	1.00	0.0767
11	2030	29	32	0.002268	16.6316	1.87	1.47	1.23	1.00	0.61	1.00	0.0774
12	2031	29	32	0.002268	16.7484	1.87	1.47	1.23	1.00	0.61	1.00	0.0781
13	2032	29	33	0.002268	16.8660	1.87	1.47	1.23	1.00	0.61	1.00	0.0788
14	2033	29	33	0.002268	16.9844	1.88	1.47	1.23	1.00	0.61	1.00	0.0795
15	2034	30	34	0.002268	17.1037	1.88	1.47	1.23	1.00	0.61	1.00	0.0802
16	2035	30	34	0.002268	17.2238	1.89	1.47	1.23	1.00	0.61	1.00	0.0809
17	2036	30	35	0.002268	17.3447	1.89	1.47	1.23	1.00	0.61	1.00	0.0817
18	2037	30	35	0.002268	17.4665	1.89	1.47	1.23	1.00	0.61	1.00	0.0824
19	2038	30	36	0.002268	17.5891	1.90	1.47	1.23	1.00	0.61	1.00	0.0832
20	2039	31	36	0.002268	17.7126	1.90	1.47	1.23	1.00	0.61	1.00	0.0839

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT Basic Accident Prediction Model for Oak Lawn Road At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	1,048	27	0.002268	52.1486	1.83	1.47	1.23	1.00	0.61	1.00	0.2375
1	2020	1,054	27	0.002268	52.5148	1.83	1.47	1.23	1.00	0.61	1.00	0.2396
2	2021	1,061	28	0.002268	52.8837	1.83	1.47	1.23	1.00	0.61	1.00	0.2418
3	2022	1,067	28	0.001088	41.0657	1.00	1.00	1.25	1.00	1.00	1.00	0.0556
4	2023	1,074	29	1.001088	41.3352	1.00	1.00	1.25	1.00	1.00	1.00	51.5216
5	2024	1,080	29	2.001088	41.6064	1.00	1.00	1.25	1.00	1.00	1.00	103.6631
6	2025	1,087	30	3.001088	41.8795	1.00	1.00	1.25	1.00	1.00	1.00	156.4866
7	2026	1,094	30	4.001088	42.1543	1.00	1.00	1.25	1.00	1.00	1.00	209.9990
8	2027	1,100	30	5.001088	42.4309	1.00	1.00	1.25	1.00	1.00	1.00	264.2070
9	2028	1,107	31	6.001088	42.7094	1.00	1.00	1.25	1.00	1.00	1.00	319.1173
10	2029	1,114	31	7.001088	42.9896	1.00	1.00	1.25	1.00	1.00	1.00	374.7370
11	2030	1,121	32	8.001088	43.2717	1.00	1.00	1.25	1.00	1.00	1.00	431.0728
12	2031	1,128	32	9.001088	43.5557	1.00	1.00	1.25	1.00	1.00	1.00	488.1319
13	2032	1,135	33	10.001088	43.8415	1.00	1.00	1.25	1.00	1.00	1.00	545.9214
14	2033	1,141	33	11.001088	44.1292	1.00	1.00	1.25	1.00	1.00	1.00	604.4482
15	2034	1,148	34	12.001088	44.4188	1.00	1.00	1.25	1.00	1.00	1.00	663.7197
16	2035	1,155	34	13.001088	44.7103	1.00	1.00	1.25	1.00	1.00	1.00	723.7430
17	2036	1,163	35	14.001088	45.0037	1.00	1.00	1.25	1.00	1.00	1.00	784.5255
18	2037	1,170	35	15.001088	45.2990	1.00	1.00	1.25	1.00	1.00	1.00	846.0746
19	2038	1,177	36	16.001088	45.5963	1.00	1.00	1.25	1.00	1.00	1.00	908.3977
20	2039	1,184	36	17.001088	45.8955	1.00	1.00	1.25	1.00	1.00	1.00	971.5024

[^18]| Year | Calendar Year | ADT | Daily Crossings | Formula Constant (K) | Exposure
 Factor (EI) | Day Through Trains Factor (DT) | Max Tiemtable Speed Factor (MS) | $\begin{gathered} \text { Main } \\ \text { Tracks } \\ \text { Factor (MT) } \end{gathered}$ | Highway Paved Factor (HP) | Highway Type Factor (HT) | Highway Lane Factor (HL) | Unnormalized Crash Prediction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2019 | 263 | 27 | 0.001088 | 26.1742 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0423 |
| 1 | 2020 | 265 | 27 | 0.001088 | 26.3460 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0425 |
| 2 | 2021 | 266 | 28 | 0.001088 | 26.5189 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0428 |
| 3 | 2022 | 268 | 28 | 0.001088 | 26.6929 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0431 |
| 4 | 2023 | 269 | 29 | 0.001088 | 26.8681 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0434 |
| 5 | 2024 | 271 | 29 | 0.001088 | 27.0444 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0437 |
| 6 | 2025 | 273 | 30 | 0.001088 | 27.2218 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0440 |
| 7 | 2026 | 274 | 30 | 0.001088 | 27.4005 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0442 |
| 8 | 2027 | 276 | 30 | 0.001088 | 27.5803 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0445 |
| 9 | 2028 | 278 | 31 | 0.001088 | 27.7613 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0448 |
| 10 | 2029 | 280 | 31 | 0.001088 | 27.9434 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0451 |
| 11 | 2030 | 281 | 32 | 0.001088 | 28.1268 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0454 |
| 12 | 2031 | 283 | 32 | 0.001088 | 28.3114 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0457 |
| 13 | 2032 | 285 | 33 | 0.001088 | 28.4971 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0460 |
| 14 | 2033 | 286 | 33 | 0.001088 | 28.6841 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0463 |
| 15 | 2034 | 288 | 34 | 0.001088 | 28.8724 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0466 |
| 16 | 2035 | 290 | 34 | 0.001088 | 29.0618 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0469 |
| 17 | 2036 | 292 | 35 | 0.001088 | 29.2525 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0472 |
| 18 | 2037 | 294 | 35 | 0.001088 | 29.4445 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0475 |
| 19 | 2038 | 295 | 36 | 0.001088 | 29.6377 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0479 |
| 20 | 2039 | 297 | 36 | 0.001088 | 29.8322 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.11 | 0.0482 |

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT Basic Accident Prediction Model for Highway NN At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	626	27	0.001088	34.2946	1.00	1.00	1.34	1.00	1.00	1.11	0.0554
1	2020	630	27	0.001088	34.5197	1.00	1.00	1.34	1.00	1.00	1.11	0.0557
2	2021	634	28	0.001088	34.7462	1.00	1.00	1.34	1.00	1.00	1.11	0.0561
3	2022	638	28	0.001088	34.9742	1.00	1.00	1.34	1.00	1.00	1.11	0.0565
4	2023	641	29	0.001088	35.2037	1.00	1.00	1.34	1.00	1.00	1.11	0.0568
5	2024	645	29	0.001088	35.4347	1.00	1.00	1.34	1.00	1.00	1.11	0.0572
6	2025	649	30	0.001088	35.6673	1.00	1.00	1.34	1.00	1.00	1.11	0.0576
7	2026	653	30	0.001088	35.9013	1.00	1.00	1.34	1.00	1.00	1.11	0.0580
8	2027	657	30	0.001088	36.1369	1.00	1.00	1.34	1.00	1.00	1.11	0.0583
9	2028	661	31	0.001088	36.3740	1.00	1.00	1.34	1.00	1.00	1.11	0.0587
10	2029	665	31	0.001088	36.6127	1.00	1.00	1.34	1.00	1.00	1.11	0.0591
11	2030	669	32	0.001088	36.8530	1.00	1.00	1.34	1.00	1.00	1.11	0.0595
12	2031	674	32	0.001088	37.0948	1.00	1.00	1.34	1.00	1.00	1.11	0.0599
13	2032	678	33	0.001088	37.3383	1.00	1.00	1.34	1.00	1.00	1.11	0.0603
14	2033	682	33	0.001088	37.5833	1.00	1.00	1.34	1.00	1.00	1.11	0.0607
15	2034	686	34	0.001088	37.8299	1.00	1.00	1.34	1.00	1.00	1.11	0.0611
16	2035	690	34	0.001088	38.0781	1.00	1.00	1.34	1.00	1.00	1.11	0.0615
17	2036	694	35	0.001088	38.3280	1.00	1.00	1.34	1.00	1.00	1.11	0.0619
18	2037	699	35	0.001088	38.5795	1.00	1.00	1.34	1.00	1.00	1.11	0.0623
19	2038	703	36	0.001088	38.8327	1.00	1.00	1.34	1.00	1.00	1.11	0.0627
20	2039	707	36	0.001088	39.0875	1.00	1.00	1.34	1.00	1.00	1.11	0.0631

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT Basic Accident Prediction Model for W Box School Loop At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	72	27	0.002268	21.3552	1.83	1.47	1.23	1.00	0.61	1.00	0.0972
1	2020	72	27	0.002268	21.5051	1.83	1.47	1.23	1.00	0.61	1.00	0.0981
2	2021	73	28	0.002268	21.6561	1.83	1.47	1.23	1.00	0.61	1.00	0.0990
3	2022	73	28	0.002268	21.8082	1.84	1.47	1.23	1.00	0.61	1.00	0.0999
4	2023	74	29	0.002268	21.9614	1.84	1.47	1.23	1.00	0.61	1.00	0.1008
5	2024	74	29	0.002268	22.1156	1.85	1.47	1.23	1.00	0.61	1.00	0.1017
6	2025	75	30	0.002268	22.2709	1.85	1.47	1.23	1.00	0.61	1.00	0.1026
7	2026	75	30	0.002268	22.4273	1.85	1.47	1.23	1.00	0.61	1.00	0.1035
8	2027	76	30	0.002268	22.5848	1.86	1.47	1.23	1.00	0.61	1.00	0.1045
9	2028	76	31	0.002268	22.7434	1.86	1.47	1.23	1.00	0.61	1.00	0.1054
10	2029	77	31	0.002268	22.9031	1.86	1.47	1.23	1.00	0.61	1.00	0.1064
11	2030	77	32	0.002268	23.0639	1.87	1.47	1.23	1.00	0.61	1.00	0.1073
12	2031	77	32	0.002268	23.2259	1.87	1.47	1.23	1.00	0.61	1.00	0.1083
13	2032	78	33	0.002268	23.3890	1.87	1.47	1.23	1.00	0.61	1.00	0.1093
14	2033	78	33	0.002268	23.5532	1.88	1.47	1.23	1.00	0.61	1.00	0.1103
15	2034	79	34	0.002268	23.7186	1.88	1.47	1.23	1.00	0.61	1.00	0.1112
16	2035	79	34	0.002268	23.8852	1.89	1.47	1.23	1.00	0.61	1.00	0.1122
17	2036	80	35	0.002268	24.0529	1.89	1.47	1.23	1.00	0.61	1.00	0.1133
18	2037	80	35	0.002268	24.2218	1.89	1.47	1.23	1.00	0.61	1.00	0.1143
19	2038	81	36	0.002268	24.3919	1.90	1.47	1.23	1.00	0.61	1.00	0.1153
20	2039	81	36	0.002268	24.5632	1.90	1.47	1.23	1.00	0.61	1.00	0.1163

[^19]| Year | Calendar Year | ADT | Daily Crossings | Formula Constant (K) | Exposure
 Factor (EI) | Day
 Through
 Trains
 Factor (DT) | Max
 Tiemtable Speed Factor (MS) | Main
 Tracks Factor (MT) | Highway Paved Factor (HP) | Highway Type Factor (HT) | Highway Lane Factor (HL) | Unnormalized Crash Prediction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2019 | 10 | 27 | 0.002268 | 11.0601 | 1.83 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0504 |
| 1 | 2020 | 10 | 27 | 0.002268 | 11.1378 | 1.83 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0508 |
| 2 | 2021 | 10 | 28 | 0.002268 | 11.2159 | 1.83 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0513 |
| 3 | 2022 | 10 | 28 | 0.002268 | 11.2946 | 1.84 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0517 |
| 4 | 2023 | 10 | 29 | 0.002268 | 11.3739 | 1.84 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0522 |
| 5 | 2024 | 10 | 29 | 0.002268 | 11.4537 | 1.85 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0527 |
| 6 | 2025 | 10 | 30 | 0.002268 | 11.5341 | 1.85 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0531 |
| 7 | 2026 | 10 | 30 | 0.002268 | 11.6151 | 1.85 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0536 |
| 8 | 2027 | 11 | 30 | 0.002268 | 11.6966 | 1.86 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0541 |
| 9 | 2028 | 11 | 31 | 0.002268 | 11.7787 | 1.86 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0546 |
| 10 | 2029 | 11 | 31 | 0.002268 | 11.8613 | 1.86 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0551 |
| 11 | 2030 | 11 | 32 | 0.002268 | 11.9446 | 1.87 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0556 |
| 12 | 2031 | 11 | 32 | 0.002268 | 12.0284 | 1.87 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0561 |
| 13 | 2032 | 11 | 33 | 0.002268 | 12.1129 | 1.87 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0566 |
| 14 | 2033 | 11 | 33 | 0.002268 | 12.1979 | 1.88 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0571 |
| 15 | 2034 | 11 | 34 | 0.002268 | 12.2835 | 1.88 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0576 |
| 16 | 2035 | 11 | 34 | 0.002268 | 12.3697 | 1.89 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0581 |
| 17 | 2036 | 11 | 35 | 0.002268 | 12.4565 | 1.89 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0587 |
| 18 | 2037 | 11 | 35 | 0.002268 | 12.5440 | 1.89 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0592 |
| 19 | 2038 | 11 | 36 | 0.002268 | 12.6320 | 1.90 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0597 |
| 20 | 2039 | 11 | 36 | 0.002268 | 12.7207 | 1.90 | 1.47 | 1.23 | 1.00 | 0.61 | 1.00 | 0.0603 |

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT Basic Accident Prediction Model for Hummingbird Lane At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	33	27	0.002268	16.4649	1.83	1.47	1.23	1.00	0.61	1.00	0.0750
1	2020	33	27	0.002268	16.5805	1.83	1.47	1.23	1.00	0.61	1.00	0.0757
2	2021	33	28	0.002268	16.6969	1.83	1.47	1.23	1.00	0.61	1.00	0.0763
3	2022	34	28	0.002268	16.8141	1.84	1.47	1.23	1.00	0.61	1.00	0.0770
4	2023	34	29	0.002268	16.9322	1.84	1.47	1.23	1.00	0.61	1.00	0.0777
5	2024	34	29	0.002268	17.0511	1.85	1.47	1.23	1.00	0.61	1.00	0.0784
6	2025	34	30	0.002268	17.1708	1.85	1.47	1.23	1.00	0.61	1.00	0.0791
7	2026	34	30	0.002268	17.2914	1.85	1.47	1.23	1.00	0.61	1.00	0.0798
8	2027	35	30	0.002268	17.4128	1.86	1.47	1.23	1.00	0.61	1.00	0.0806
9	2028	35	31	0.002268	17.5350	1.86	1.47	1.23	1.00	0.61	1.00	0.0813
10	2029	35	31	0.002268	17.6582	1.86	1.47	1.23	1.00	0.61	1.00	0.0820
11	2030	35	32	0.002268	17.7822	1.87	1.47	1.23	1.00	0.61	1.00	0.0827
12	2031	36	32	0.002268	17.9070	1.87	1.47	1.23	1.00	0.61	1.00	0.0835
13	2032	36	33	0.002268	18.0328	1.87	1.47	1.23	1.00	0.61	1.00	0.0842
14	2033	36	33	0.002268	18.1594	1.88	1.47	1.23	1.00	0.61	1.00	0.0850
15	2034	36	34	0.002268	18.2869	1.88	1.47	1.23	1.00	0.61	1.00	0.0858
16	2035	36	34	0.002268	18.4153	1.89	1.47	1.23	1.00	0.61	1.00	0.0865
17	2036	37	35	0.002268	18.5446	1.89	1.47	1.23	1.00	0.61	1.00	0.0873
18	2037	37	35	0.002268	18.6748	1.89	1.47	1.23	1.00	0.61	1.00	0.0881
19	2038	37	36	0.002268	18.8060	1.90	1.47	1.23	1.00	0.61	1.00	0.0889
20	2039	37	36	0.002268	18.9380	1.90	1.47	1.23	1.00	0.61	1.00	0.0897

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

USDOT Basic Accident Prediction Model for Tandy At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	263	27	0.001088	26.1742	1.00	1.00	1.34	1.00	1.00	1.11	0.0423
1	2020	265	27	0.001088	26.3460	1.00	1.00	1.34	1.00	1.00	1.11	0.0425
2	2021	266	28	0.001088	26.5189	1.00	1.00	1.34	1.00	1.00	1.11	0.0428
3	2022	268	28	0.001088	26.6929	1.00	1.00	1.34	1.00	1.00	1.11	0.0431
4	2023	269	29	0.001088	26.8681	1.00	1.00	1.34	1.00	1.00	1.11	0.0434
5	2024	271	29	0.001088	27.0444	1.00	1.00	1.34	1.00	1.00	1.11	0.0437
6	2025	273	30	0.001088	27.2218	1.00	1.00	1.34	1.00	1.00	1.11	0.0440
7	2026	274	30	0.001088	27.4005	1.00	1.00	1.34	1.00	1.00	1.11	0.0442
8	2027	276	30	0.001088	27.5803	1.00	1.00	1.34	1.00	1.00	1.11	0.0445
9	2028	278	31	0.001088	27.7613	1.00	1.00	1.34	1.00	1.00	1.11	0.0448
10	2029	280	31	0.001088	27.9434	1.00	1.00	1.34	1.00	1.00	1.11	0.0451
11	2030	281	32	0.001088	28.1268	1.00	1.00	1.34	1.00	1.00	1.11	0.0454
12	2031	283	32	0.001088	28.3114	1.00	1.00	1.34	1.00	1.00	1.11	0.0457
13	2032	285	33	0.001088	28.4971	1.00	1.00	1.34	1.00	1.00	1.11	0.0460
14	2033	286	33	0.001088	28.6841	1.00	1.00	1.34	1.00	1.00	1.11	0.0463
15	2034	288	34	0.001088	28.8724	1.00	1.00	1.34	1.00	1.00	1.11	0.0466
16	2035	290	34	0.001088	29.0618	1.00	1.00	1.34	1.00	1.00	1.11	0.0469
17	2036	292	35	0.001088	29.2525	1.00	1.00	1.34	1.00	1.00	1.11	0.0472
18	2037	294	35	0.001088	29.4445	1.00	1.00	1.34	1.00	1.00	1.11	0.0475
19	2038	295	36	0.001088	29.6377	1.00	1.00	1.34	1.00	1.00	1.11	0.0479
20	2039	297	36	0.001088	29.8322	1.00	1.00	1.34	1.00	1.00	1.11	0.0482

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	830	27	0.001088	37.4454	1.00	1.00	1.34	1.00	1.00	1.11	0.0605
1	2020	846	27	0.001088	37.8427	1.00	1.00	1.34	1.00	1.00	1.11	0.0611
2	2021	862	28	0.001088	38.2443	1.00	1.00	1.34	1.00	1.00	1.11	0.0618
3	2022	879	28	0.001088	38.6502	1.00	1.00	1.34	1.00	1.00	1.11	0.0624
4	2023	896	29	0.001088	39.0603	1.00	1.00	1.34	1.00	1.00	1.11	0.0631
5	2024	913	29	0.001088	39.4749	1.00	1.00	1.34	1.00	1.00	1.11	0.0637
6	2025	930	30	0.001088	39.8938	1.00	1.00	1.34	1.00	1.00	1.11	0.0644
7	2026	948	30	0.001088	40.3171	1.00	1.00	1.34	1.00	1.00	1.11	0.0651
8	2027	966	30	0.001088	40.7450	1.00	1.00	1.34	1.00	1.00	1.11	0.0658
9	2028	985	31	0.001088	41.1774	1.00	1.00	1.34	1.00	1.00	1.11	0.0665
10	2029	1,004	31	0.001088	41.6144	1.00	1.00	1.34	1.00	1.00	1.11	0.0672
11	2030	1,023	32	0.001088	42.0560	1.00	1.00	1.34	1.00	1.00	1.00	0.0613
12	2031	1,042	32	0.001088	42.5023	1.00	1.00	1.34	1.00	1.00	1.00	0.0620
13	2032	1,062	33	0.001088	42.9533	1.00	1.00	1.34	1.00	1.00	1.00	0.0626
14	2033	1,083	33	0.001088	43.4092	1.00	1.00	1.34	1.00	1.00	1.00	0.0633
15	2034	1,104	34	0.001088	43.8698	1.00	1.00	1.34	1.00	1.00	1.00	0.0640
16	2035	1,125	34	0.001088	44.3354	1.00	1.00	1.34	1.00	1.00	1.00	0.0646
17	2036	1,146	35	0.001088	44.8059	1.00	1.00	1.34	1.00	1.00	1.00	0.0653
18	2037	1,168	35	0.001088	45.2814	1.00	1.00	1.34	1.00	1.00	1.00	0.0660
19	2038	1,191	36	0.001088	45.7619	1.00	1.00	1.34	1.00	1.00	1.00	0.0667
20	2039	1,213	36	0.001088	46.2475	1.00	1.00	1.34	1.00	1.00	1.00	0.0674

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT Basic Accident Prediction Model for Carpenter St At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	86	27	0.001088	18.4762	1.00	1.00	1.34	1.00	1.00	1.11	0.0298
1	2020	87	27	0.001088	18.5975	1.00	1.00	1.34	1.00	1.00	1.11	0.0300
2	2021	87	28	0.001088	18.7195	1.00	1.00	1.34	1.00	1.00	1.11	0.0302
3	2022	88	28	0.001088	18.8423	1.00	1.00	1.34	1.00	1.00	1.11	0.0304
4	2023	88	29	0.001088	18.9660	1.00	1.00	1.34	1.00	1.00	1.11	0.0306
5	2024	89	29	0.001088	19.0904	1.00	1.00	1.34	1.00	1.00	1.11	0.0308
6	2025	2,413	30	0.001088	53.6916	1.00	1.00	1.34	1.00	1.00	1.11	0.0867
7	2026	2,428	30	0.001088	54.0439	1.00	1.00	1.34	1.00	1.00	1.11	0.0873
8	2027	2,443	30	0.001088	54.3986	1.00	1.00	1.34	1.00	1.00	1.11	0.0878
9	2028	2,458	31	0.001088	54.7555	1.00	1.00	1.34	1.00	1.00	1.11	0.0884
10	2029	2,473	31	0.001088	55.1149	1.00	1.00	1.34	1.00	1.00	1.11	0.0890
11	2030	2,488	32	0.001088	55.4765	1.00	1.00	1.34	1.00	1.00	1.11	0.0896
12	2031	2,503	32	0.001088	55.8406	1.00	1.00	1.34	1.00	1.00	1.11	0.0902
13	2032	2,518	33	0.001088	56.2070	1.00	1.00	1.34	1.00	1.00	1.11	0.0908
14	2033	2,534	33	0.001088	56.5759	1.00	1.00	1.34	1.00	1.00	1.11	0.0914
15	2034	2,549	34	0.001088	56.9471	1.00	1.00	1.34	1.00	1.00	1.11	0.0920
16	2035	2,565	34	0.001088	57.3208	1.00	1.00	1.34	1.00	1.00	1.11	0.0926
17	2036	2,581	35	0.001088	57.6970	1.00	1.00	1.34	1.00	1.00	1.11	0.0932
18	2037	2,596	35	0.001088	58.0756	1.00	1.00	1.34	1.00	1.00	1.11	0.0938
19	2038	2,612	36	0.001088	58.4567	1.00	1.00	1.34	1.00	1.00	1.11	0.0944
20	2039	2,628	36	0.001088	58.8403	1.00	1.00	1.34	1.00	1.00	1.11	0.0950

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

USDOT Basic Accident Prediction Model for Highway Z At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	911	27	0.001088	38.5477	1.00	1.00	1.34	1.00	1.00	1.11	0.0622
1	2020	917	27	0.001088	38.8007	1.00	1.00	1.34	1.00	1.00	1.11	0.0627
2	2021	922	28	0.001088	39.0553	1.00	1.00	1.34	1.00	1.00	1.11	0.0631
3	2022	928	28	0.001088	39.3116	1.00	1.00	1.34	1.00	1.00	1.11	0.0635
4	2023	934	29	0.001088	39.5696	1.00	1.00	1.34	1.00	1.00	1.11	0.0639
5	2024	939	29	0.001088	39.8292	1.00	1.00	1.34	1.00	1.00	1.11	0.0643
6	2025	945	30	0.001088	40.0906	1.00	1.00	1.34	1.00	1.00	1.11	0.0647
7	2026	951	30	0.001088	40.3537	1.00	1.00	1.34	1.00	1.00	1.11	0.0652
8	2027	957	30	0.001088	40.6185	1.00	1.00	1.34	1.00	1.00	1.11	0.0656
9	2028	962	31	0.001088	40.8850	1.00	1.00	1.34	1.00	1.00	1.11	0.0660
10	2029	968	31	0.001088	41.1533	1.00	1.00	1.34	1.00	1.00	1.11	0.0664
11	2030	974	32	0.001088	41.4234	1.00	1.00	1.34	1.00	1.00	1.11	0.0669
12	2031	980	32	0.001088	41.6952	1.00	1.00	1.34	1.00	1.00	1.11	0.0673
13	2032	986	33	0.001088	41.9688	1.00	1.00	1.34	1.00	1.00	1.11	0.0678
14	2033	992	33	0.001088	42.2442	1.00	1.00	1.34	1.00	1.00	1.11	0.0682
15	2034	998	34	0.001088	42.5215	1.00	1.00	1.34	1.00	1.00	1.11	0.0687
16	2035	1,004	34	0.001088	42.8005	1.00	1.00	1.34	1.00	1.00	1.11	0.0691
17	2036	1,011	35	0.001088	43.0814	1.00	1.00	1.34	1.00	1.00	1.11	0.0696
18	2037	1,017	35	0.001088	43.3641	1.00	1.00	1.34	1.00	1.00	1.11	0.0700
19	2038	1,023	36	0.001088	43.6486	1.00	1.00	1.34	1.00	1.00	1.11	0.0705
20	2039	1,029	36	0.001088	43.9351	1.00	1.00	1.34	1.00	1.00	1.11	0.0709

[^20]| Year | Calendar Year | ADT | $\begin{gathered} \text { Daily } \\ \text { Crossings } \end{gathered}$ | Formula Constant (K) | Exposure
 Factor (EI) | Day Through Trains Factor (DT) | Max
 Tiemtable
 Speed
 Factor (MS) | $\begin{gathered} \text { Main } \\ \text { Tracks } \\ \text { Factor (MT) } \end{gathered}$ | Highway Paved Factor (HP) | Highway Type Factor (HT) | Highway Lane Factor (HL) | Unnormalized Crash Prediction |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2019 | 89 | 27 | 0.002268 | 22.9188 | 1.93 | 1.47 | 1.23 | 1.00 | 0.90 | 1.00 | 0.1643 |
| 1 | 2020 | 91 | 27 | 0.002268 | 23.1791 | 1.93 | 1.47 | 1.23 | 1.00 | 0.90 | 1.00 | 0.1665 |
| 2 | 2021 | 3,537 | 28 | 0.002268 | 79.0096 | 1.94 | 1.47 | 1.23 | 1.00 | 0.90 | 1.00 | 0.5686 |
| 3 | 2022 | 3,605 | 28 | 0.001088 | 60.0041 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 0.0875 |
| 4 | 2023 | 3,674 | 29 | 1.001088 | 60.6409 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 81.3472 |
| 5 | 2024 | 3,744 | 29 | 2.001088 | 61.2844 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 164.3317 |
| 6 | 2025 | 3,816 | 30 | 3.001088 | 61.9348 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 249.0682 |
| 7 | 2026 | 3,889 | 30 | 4.001088 | 62.5921 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 335.5848 |
| 8 | 2027 | 3,964 | 30 | 5.001088 | 63.2563 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 423.9096 |
| 9 | 2028 | 4,040 | 31 | 6.001088 | 63.9276 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 514.0712 |
| 10 | 2029 | 4,117 | 31 | 7.001088 | 64.6060 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 606.0988 |
| 11 | 2030 | 4,196 | 32 | 8.001088 | 65.2916 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 700.0217 |
| 12 | 2031 | 4,277 | 32 | 9.001088 | 65.9845 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 795.8698 |
| 13 | 2032 | 4,359 | 33 | 10.001088 | 66.6848 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 893.6733 |
| 14 | 2033 | 4,442 | 33 | 11.001088 | 67.3925 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 993.4631 |
| 15 | 2034 | 4,527 | 34 | 12.001088 | 68.1076 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 1095.2703 |
| 16 | 2035 | 4,614 | 34 | 13.001088 | 68.8304 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 1199.1263 |
| 17 | 2036 | 4,703 | 35 | 14.001088 | 69.5609 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 1305.0633 |
| 18 | 2037 | 4,793 | 35 | 15.001088 | 70.2991 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 1413.1137 |
| 19 | 2038 | 4,885 | 36 | 16.001088 | 71.0451 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 1523.3105 |
| 20 | 2039 | 4,978 | 36 | 17.001088 | 71.7990 | 1.00 | 1.00 | 1.34 | 1.00 | 1.00 | 1.00 | 1635.6870 |

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation

USDOT Basic Accident Prediction Model for Dutch Hill Road At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	52	27	0.001088	15.7957	1.00	1.00	1.34	1.00	1.00	1.00	0.0230
1	2020	53	27	0.001088	15.9633	1.00	1.00	1.34	1.00	1.00	1.00	0.0233
2	2021	54	28	0.001088	16.1327	1.00	1.00	1.34	1.00	1.00	1.00	0.0235
3	2022	55	28	0.001088	16.3038	1.00	1.00	1.34	1.00	1.00	1.00	0.0238
4	2023	56	29	0.001088	16.4768	1.00	1.00	1.34	1.00	1.00	1.00	0.0240
5	2024	57	29	0.001088	16.6517	1.00	1.00	1.34	1.00	1.00	1.00	0.0243
6	2025	58	30	0.001088	16.8284	1.00	1.00	1.34	1.00	1.00	1.00	0.0245
7	2026	59	30	0.001088	17.0069	1.00	1.00	1.34	1.00	1.00	1.00	0.0248
8	2027	61	30	0.001088	17.1874	1.00	1.00	1.34	1.00	1.00	1.00	0.0251
9	2028	62	31	0.001088	17.3698	1.00	1.00	1.34	1.00	1.00	1.00	0.0253
10	2029	63	31	0.001088	17.5541	1.00	1.00	1.34	1.00	1.00	1.00	0.0256
11	2030	64	32	0.001088	17.7403	1.00	1.00	1.34	1.00	1.00	1.00	0.0259
12	2031	65	32	0.001088	17.9286	1.00	1.00	1.34	1.00	1.00	1.00	0.0261
13	2032	67	33	0.001088	18.1188	1.00	1.00	1.34	1.00	1.00	1.00	0.0264
14	2033	68	33	0.001088	18.3111	1.00	1.00	1.34	1.00	1.00	1.00	0.0267
15	2034	69	34	0.001088	18.5054	1.00	1.00	1.34	1.00	1.00	1.00	0.0270
16	2035	70	34	0.001088	18.7018	1.00	1.00	1.34	1.00	1.00	1.00	0.0273
17	2036	72	35	0.001088	18.9002	1.00	1.00	1.34	1.00	1.00	1.00	0.0276
18	2037	73	35	0.001088	19.1008	1.00	1.00	1.34	1.00	1.00	1.00	0.0278
19	2038	75	36	0.001088	19.3035	1.00	1.00	1.34	1.00	1.00	1.00	0.0281
20	2039	76	36	0.001088	19.5083	1.00	1.00	1.34	1.00	1.00	1.00	0.0284

Crossing Safety and Operation

USDOT Basic Accident Prediction Model for Red Oak Road At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Formula Constant (K)	Exposure Factor (EI)	Day Through Trains Factor (DT)	Max Tiemtable Speed Factor (MS)	Main Tracks Factor (MT)	Highway Paved Factor (HP)	Highway Type Factor (HT)	Highway Lane Factor (HL)	Unnormalized Crash Prediction
0	2019	279	27	0.003646	22.4532	1.26	1.00	1.11	1.00	1.00	1.15	0.1320
1	2020	284	27	0.003646	22.6789	1.26	1.00	1.11	1.00	1.00	1.15	0.1334
2	2021	290	28	0.003646	22.9069	1.26	1.00	1.11	1.00	1.00	1.15	0.1348
3	2022	295	28	0.003646	27.5181	1.26	1.00	1.11	1.00	1.00	1.15	0.1621
4	2023	301	29	0.003646	27.8102	1.26	1.00	1.11	1.00	1.00	1.15	0.1639
5	2024	307	29	0.003646	28.1053	1.26	1.00	1.11	1.00	1.00	1.15	0.1658
6	2025	313	30	0.003646	28.4035	1.26	1.00	1.11	1.00	1.00	1.15	0.1677
7	2026	319	30	0.003646	28.7050	1.27	1.00	1.11	1.00	1.00	1.15	0.1696
8	2027	325	30	0.003646	29.0096	1.27	1.00	1.11	1.00	1.00	1.15	0.1715
9	2028	331	31	0.003646	29.3174	1.27	1.00	1.11	1.00	1.00	1.15	0.1734
10	2029	337	31	0.003646	29.6286	1.27	1.00	1.11	1.00	1.00	1.15	0.1754
11	2030	344	32	0.003646	29.9430	1.27	1.00	1.11	1.00	1.00	1.15	0.1774
12	2031	350	32	0.003646	30.2607	1.27	1.00	1.11	1.00	1.00	1.15	0.1794
13	2032	357	33	0.003646	30.5819	1.27	1.00	1.11	1.00	1.00	1.15	0.1814
14	2033	364	33	0.003646	30.9064	1.27	1.00	1.11	1.00	1.00	1.15	0.1835
15	2034	371	34	0.003646	31.2344	1.27	1.00	1.11	1.00	1.00	1.15	0.1855
16	2035	378	34	0.003646	31.5658	1.27	1.00	1.11	1.00	1.00	1.15	0.1876
17	2036	385	35	0.003646	31.9008	1.27	1.00	1.11	1.00	1.00	1.15	0.1898
18	2037	393	35	0.003646	32.2394	1.28	1.00	1.11	1.00	1.00	1.15	0.1919
19	2038	400	36	0.003646	32.5815	1.28	1.00	1.11	1.00	1.00	1.15	0.1941
20	2039	408	36	0.003646	32.9272	1.28	1.00	1.11	1.00	1.00	1.15	0.1963

${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of
USDOT General Accident Prediction Model for Peewee Road At-Grade Crossing

	Calendar							
Year	ADT	Daily						
Crossings	Un-normalized Crash Prediction ${ }^{1}$	Recorded Incidents in T Years (($)$	\# Years of Crash Data (T)	Formula Weighting Factor (To)	Crash Probability (B)			
0	2019	367	27	0.0469	3	44	10.3213	0.0641
1	2020	369	27	0.0472	3	44	10.2886	0.0642
2	2021	372	28	0.0475	3	44	10.2559	0.0643
3	2022	374	28	0.0478	3	44	10.2233	0.0643
4	2023	376	29	0.0481	3	44	10.1906	0.0644
5	2024	378	29	0.0484	3	44	10.1579	0.0645
6	2025	381	30	0.0488	3	44	10.1252	0.0645
7	2026	383	30	0.0491	3	44	10.0925	0.0646
8	2027	385	30	0.0494	3	44	10.0598	0.0647
9	2028	388	31	0.0497	3	44	10.0271	0.0648
10	2029	390	31	0.0501	3	44	9.9944	0.0648
11	2030	392	32	0.0504	3	44	9.9617	0.0649
12	2031	395	32	0.0507	3	44	9.9290	0.0650
13	2032	397	33	0.0510	3	44	9.8963	0.0650
14	2033	400	33	0.0514	3	44	9.8636	0.0651
15	2034	402	34	0.0517	3	44	9.8309	0.0652
16	2035	405	34	0.0521	3	44	9.7982	0.0652
17	2036	407	35	0.0524	3	44	9.7655	0.0653
18	2037	410	35	0.0527	3	44	9.7328	0.0654
19	2038	412	36	0.0531	3	44	9.7001	0.0655
20	2039	415	36	0.0534	3	44	9.6675	0.0655
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Mineral Road At-Grade Crossing

	Calendar							
Year	ADT	Daily Crossings	Un-normalized Crash	Recorded Incidents in T Prediction ${ }^{1}$	\# Years of Crash Cears	Formula Weighting	Crash Factor (To)	Probability (B)

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Dewberry Road At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Un-normalized Crash Prediction ${ }^{1}$	Recorded Incidents in T Years (N)	$\begin{gathered} \text { \# Years of } \\ \text { Crash } \\ \text { Data }(T) \end{gathered}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	136	27	0.1202	2	44	5.8750	0.0543
1	2020	137	27	0.1213	2	44	5.8379	0.0543
2	2021	138	28	0.1224	2	44	5.8009	0.0544
3	2022	139	28	0.1235	2	44	5.7640	0.0545
4	2023	139	29	0.1246	2	44	5.7273	0.0546
5	2024	140	29	0.1257	2	44	5.6907	0.0546
6	2025	141	30	0.1269	2	44	5.6543	0.0547
7	2026	142	30	0.1280	2	44	5.6180	0.0548
8	2027	143	30	0.1292	2	44	5.5818	0.0549
9	2028	144	31	0.1303	2	44	5.5458	0.0550
10	2029	145	31	0.1315	2	44	5.5099	0.0550
11	2030	145	32	0.1327	2	44	5.4742	0.0551
12	2031	146	32	0.1339	2	44	5.4386	0.0552
13	2032	147	33	0.1351	2	44	5.4032	0.0553
14	2033	148	33	0.1363	2	44	5.3679	0.0553
15	2034	149	34	0.1375	2	44	5.3327	0.0554
16	2035	150	34	0.1388	2	44	5.2977	0.0555
17	2036	151	35	0.1400	2	44	5.2629	0.0556
18	2037	152	35	0.1413	2	44	5.2281	0.0556
19	2038	153	36	0.1425	2	44	5.1936	0.0557
20	2039	154	36	0.1438	2	44	5.1592	0.0558

${ }^{1}$ Derived from Appendix Table 1b

Year	Calendar Year	ADT	$\begin{gathered} \text { Daily } \\ \text { Crossings } \end{gathered}$	Un-normalized Crash Prediction ${ }^{1}$	Recorded Incidents in T Years (N)	$\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data }(T) \end{aligned}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	71	27	0.0281	5	44	12.8035	0.0944
1	2020	71	27	0.0283	5	44	12.7733	0.0944
2	2021	72	28	0.0285	5	44	12.7431	0.0945
3	2022	72	28	0.0287	5	44	12.7128	0.0946
4	2023	73	29	0.0288	5	44	12.6825	0.0947
5	2024	73	29	0.0290	5	44	12.6521	0.0947
6	2025	74	30	0.0292	5	44	12.6217	0.0948
7	2026	74	30	0.0294	5	44	12.5912	0.0949
8	2027	75	30	0.0296	5	44	12.5607	0.0950
9	2028	75	31	0.0298	5	44	12.5301	0.0951
10	2029	75	31	0.0300	5	44	12.4995	0.0951
11	2030	76	32	0.0302	5	44	12.4688	0.0952
12	2031	76	32	0.0304	5	44	12.4381	0.0953
13	2032	77	33	0.0306	5	44	12.4073	0.0954
14	2033	77	33	0.0308	5	44	12.3764	0.0955
15	2034	78	34	0.0310	5	44	12.3456	0.0955
16	2035	78	34	0.0312	5	44	12.3146	0.0956
17	2036	79	35	0.0314	5	44	12.2837	0.0957
18	2037	79	35	0.0316	5	44	12.2526	0.0958
19	2038	80	36	0.0318	5	44	12.2216	0.0959
20	2039	80	36	0.0320	5	44	12.1905	0.0959

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for E Box School Loop At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Un-normalized Crash Prediction ${ }^{1}$	Recorded Incidents in T Years (N)	$\begin{gathered} \text { \# Years of } \\ \text { Crash } \\ \text { Data (T) } \end{gathered}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	27	27	0.0701	1	44	8.3246	0.0303
1	2020	27	27	0.0708	1	44	8.2811	0.0303
2	2021	27	28	0.0714	1	44	8.2376	0.0304
3	2022	27	28	0.0720	1	44	8.1942	0.0305
4	2023	28	29	0.0727	1	44	8.1509	0.0305
5	2024	28	29	0.0733	1	44	8.1076	0.0306
6	2025	28	30	0.0740	1	44	8.0644	0.0307
7	2026	28	30	0.0747	1	44	8.0213	0.0307
8	2027	28	30	0.0753	1	44	7.9783	0.0308
9	2028	29	31	0.0760	1	44	7.9353	0.0309
10	2029	29	31	0.0767	1	44	7.8924	0.0309
11	2030	29	32	0.0774	1	44	7.8496	0.0310
12	2031	29	32	0.0781	1	44	7.8069	0.0311
13	2032	29	33	0.0788	1	44	7.7643	0.0311
14	2033	29	33	0.0795	1	44	7.7217	0.0312
15	2034	30	34	0.0802	1	44	7.6793	0.0313
16	2035	30	34	0.0809	1	44	7.6369	0.0313
17	2036	30	35	0.0817	1	44	7.5946	0.0314
18	2037	30	35	0.0824	1	44	7.5524	0.0315
19	2038	30	36	0.0832	1	44	7.5103	0.0315
20	2039	31	36	0.0839	1	44	7.4682	0.0316

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Oak Lawn At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Un-normalized Crash Prediction ${ }^{1}$	Recorded Incidents in T Years (N)	$\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data }(T) \end{aligned}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	1,048	27	0.2375	4	44	3.4786	0.1016
1	2020	1,054	27	0.2396	4	44	3.4529	0.1017
2	2021	1,061	28	0.2418	4	44	3.4274	0.1018
3	2022	1,067	28	0.0556	4	44	9.4670	0.0847
4	2023	1,074	29	51.5216	4	44	0.0194	0.1136
5	2024	1,080	29	103.6631	4	44	0.0096	0.1136
6	2025	1,087	30	156.4866	4	44	0.0064	0.1136
7	2026	1,094	30	209.9990	4	44	0.0048	0.1136
8	2027	1,100	30	264.2070	4	44	0.0038	0.1136
9	2028	1,107	31	319.1173	4	44	0.0031	0.1136
10	2029	1,114	31	374.7370	4	44	0.0027	0.1136
11	2030	1,121	32	431.0728	4	44	0.0023	0.1136
12	2031	1,128	32	488.1319	4	44	0.0020	0.1136
13	2032	1,135	33	545.9214	4	44	0.0018	0.1136
14	2033	1,141	33	604.4482	4	44	0.0017	0.1136
15	2034	1,148	34	663.7197	4	44	0.0015	0.1136
16	2035	1,155	34	723.7430	4	44	0.0014	0.1136
17	2036	1,163	35	784.5255	4	44	0.0013	0.1136
18	2037	1,170	35	846.0746	4	44	0.0012	0.1136
19	2038	1,177	36	908.3977	4	44	0.0011	0.1136
20	2039	1,184	36	971.5024	4	44	0.0010	0.1136
Source: Crash Prediction based on ${ }^{1}$ Derived from Appendix Table 1b								

	Calendar									
Year	ADT	Daily Crossings	Un-normalized Crash	Recorded Incidents in T Prediction	\# Years of Crash Years (N)	Formula Weighting	Crash	Factor (To)	$:$	Probability (B)
:---:										

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Highway NN At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	$\begin{aligned} & \text { Un-normalized } \\ & \text { Crash } \\ & \text { Prediction }^{1} \end{aligned}$	Recorded Incidents in T Years (N)	$\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data }(T) \end{aligned}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	626	27	0.0554	1	44	9.4899	0.0285
1	2020	630	27	0.0557	1	44	9.4573	0.0286
2	2021	634	28	0.0561	1	44	9.4247	0.0286
3	2022	638	28	0.0565	1	44	9.3921	0.0287
4	2023	641	29	0.0568	1	44	9.3595	0.0287
5	2024	645	29	0.0572	1	44	9.3270	0.0288
6	2025	649	30	0.0576	1	44	9.2944	0.0288
7	2026	653	30	0.0580	1	44	9.2619	0.0289
8	2027	657	30	0.0583	1	44	9.2294	0.0289
9	2028	661	31	0.0587	1	44	9.1969	0.0290
10	2029	665	31	0.0591	1	44	9.1644	0.0290
11	2030	669	32	0.0595	1	44	9.1319	0.0290
12	2031	674	32	0.0599	1	44	9.0995	0.0291
13	2032	678	33	0.0603	1	44	9.0670	0.0291
14	2033	682	33	0.0607	1	44	9.0346	0.0292
15	2034	686	34	0.0611	1	44	9.0022	0.0292
16	2035	690	34	0.0615	1	44	8.9699	0.0293
17	2036	694	35	0.0619	1	44	8.9375	0.0293
18	2037	699	35	0.0623	1	44	8.9052	0.0294
19	2038	703	36	0.0627	1	44	8.8729	0.0294
20	2039	707	36	0.0631	1	44	8.8406	0.0295

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for W Box School Loop At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	Un-normalized Crash Prediction ${ }^{1}$	Recorded Incidents in T Years (N)	$\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data (T) } \end{aligned}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	72	27	0.0972	2	44	6.7914	0.0524
1	2020	72	27	0.0981	2	44	6.7512	0.0525
2	2021	73	28	0.0990	2	44	6.7112	0.0525
3	2022	73	28	0.0999	2	44	6.6713	0.0526
4	2023	74	29	0.1008	2	44	6.6314	0.0527
5	2024	74	29	0.1017	2	44	6.5918	0.0528
6	2025	75	30	0.1026	2	44	6.5522	0.0529
7	2026	75	30	0.1035	2	44	6.5128	0.0529
8	2027	76	30	0.1045	2	44	6.4734	0.0530
9	2028	76	31	0.1054	2	44	6.4342	0.0531
10	2029	77	31	0.1064	2	44	6.3952	0.0532
11	2030	77	32	0.1073	2	44	6.3562	0.0533
12	2031	77	32	0.1083	2	44	6.3174	0.0533
13	2032	78	33	0.1093	2	44	6.2787	0.0534
14	2033	78	33	0.1103	2	44	6.2401	0.0535
15	2034	79	34	0.1112	2	44	6.2017	0.0536
16	2035	79	34	0.1122	2	44	6.1634	0.0537
17	2036	80	35	0.1133	2	44	6.1252	0.0537
18	2037	80	35	0.1143	2	44	6.0871	0.0538
19	2038	81	36	0.1153	2	44	6.0492	0.0539
20	2039	81	36	0.1163	2	44	6.0114	0.0540

${ }^{1}$ Derived from Appendix Table 1b

	Calendar							
Year	ADT	Daily	Crossings	Un-normalized				
Crash								
Prediction ${ }^{1}$	Recorded Incidents in T Years (N)	\# Years of Crash Data (T)	Formula Weighting Factor (To)	Crash Probability (B)				
0	2019	10	27	0.0504	0	44	9.9636	0.0093
1	2020	10	27	0.0508	0	44	9.9188	0.0093
2	2021	10	28	0.0513	0	44	9.8740	0.0094
3	2022	10	28	0.0517	0	44	9.8292	0.0094
4	2023	10	29	0.0522	0	44	9.7844	0.0095
5	2024	10	29	0.0527	0	44	9.7397	0.0095
6	2025	10	30	0.0531	0	44	9.6949	0.0096
7	2026	10	30	0.0536	0	44	9.6501	0.0096
8	2027	11	30	0.0541	0	44	9.6054	0.0097
9	2028	11	31	0.0546	0	44	9.5606	0.0097
10	2029	11	31	0.0551	0	44	9.5159	0.0098
11	2030	11	32	0.0556	0	44	9.4712	0.0098
12	2031	11	32	0.0561	0	44	9.4265	0.0099
13	2032	11	33	0.0566	0	44	9.3818	0.0099
14	2033	11	33	0.0571	0	44	9.3372	0.0100
15	2034	11	34	0.0576	0	44	9.2926	0.0100
16	2035	11	34	0.0581	0	44	9.2480	0.0101
17	2036	11	35	0.0587	0	44	9.2034	0.0101
18	2037	11	35	0.0592	0	44	9.1589	0.0102
19	2038	11	36	0.0597	0	44	9.1144	0.0102
20	2039	11	36	0.0603	0	44	9.0699	0.0103
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Hummingbird Lane At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	$\begin{aligned} & \text { Un-normalized } \\ & \text { Crash } \\ & \text { Prediction }{ }^{1} \end{aligned}$	Recorded Incidents in T Years (N)	$\begin{gathered} \text { \# Years of } \\ \text { Crash } \\ \text { Data (T) } \end{gathered}$	Formula Weighting Factor (To)	$\begin{gathered} \text { Crash } \\ \text { Probability (B) } \end{gathered}$
0	2019	33	27	0.0750	0	44	8.0015	0.0115
1	2020	33	27	0.0757	0	44	7.9585	0.0116
2	2021	33	28	0.0763	0	44	7.9156	0.0116
3	2022	34	28	0.0770	0	44	7.8727	0.0117
4	2023	34	29	0.0777	0	44	7.8300	0.0117
5	2024	34	29	0.0784	0	44	7.7873	0.0118
6	2025	34	30	0.0791	0	44	7.7447	0.0118
7	2026	34	30	0.0798	0	44	7.7022	0.0119
8	2027	35	30	0.0806	0	44	7.6598	0.0119
9	2028	35	31	0.0813	0	44	7.6175	0.0120
10	2029	35	31	0.0820	0	44	7.5752	0.0120
11	2030	35	32	0.0827	0	44	7.5331	0.0121
12	2031	36	32	0.0835	0	44	7.4910	0.0121
13	2032	36	33	0.0842	0	44	7.4490	0.0122
14	2033	36	33	0.0850	0	44	7.4071	0.0122
15	2034	36	34	0.0858	0	44	7.3654	0.0123
16	2035	36	34	0.0865	0	44	7.3237	0.0123
17	2036	37	35	0.0873	0	44	7.2821	0.0124
18	2037	37	35	0.0881	0	44	7.2406	0.0125
19	2038	37	36	0.0889	0	44	7.1992	0.0125
20	2039	37	36	0.0897	0	44	7.1580	0.0126

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Tandy Lane At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	$\begin{aligned} & \text { Un-normalized } \\ & \text { Crash }^{\text {Prediction }}{ }^{1} \end{aligned}$	Recorded Incidents in T Years (N)	$\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data (T) } \end{aligned}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	263	27	0.0423	2	44	10.8386	0.0448
1	2020	265	27	0.0425	2	44	10.8061	0.0449
2	2021	266	28	0.0428	2	44	10.7736	0.0449
3	2022	268	28	0.0431	2	44	10.7411	0.0450
4	2023	269	29	0.0434	2	44	10.7085	0.0450
5	2024	271	29	0.0437	2	44	10.6760	0.0451
6	2025	273	30	0.0440	2	44	10.6434	0.0452
7	2026	274	30	0.0442	2	44	10.6108	0.0452
8	2027	276	30	0.0445	2	44	10.5783	0.0453
9	2028	278	31	0.0448	2	44	10.5457	0.0453
10	2029	280	31	0.0451	2	44	10.5130	0.0454
11	2030	281	32	0.0454	2	44	10.4804	0.0454
12	2031	283	32	0.0457	2	44	10.4478	0.0455
13	2032	285	33	0.0460	2	44	10.4152	0.0456
14	2033	286	33	0.0463	2	44	10.3825	0.0456
15	2034	288	34	0.0466	2	44	10.3498	0.0457
16	2035	290	34	0.0469	2	44	10.3172	0.0457
17	2036	292	35	0.0472	2	44	10.2845	0.0458
18	2037	294	35	0.0475	2	44	10.2518	0.0458
19	2038	295	36	0.0479	2	44	10.2191	0.0459
20	2039	297	36	0.0482	2	44	10.1864	0.0460

[^21]| Year | Calendar Year | ADT | Daily Crossings | Un-normalized Crash Prediction ${ }^{1}$ | Recorded Incidents in T Years (N) | $\begin{gathered} \text { \# Years of } \\ \text { Crash } \\ \text { Data }(T) \end{gathered}$ | Formula
 Weighting
 Factor (To) | Crash
 Probability (B) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2019 | 830 | 27 | 0.0605 | 3 | 44 | 9.0528 | 0.0669 |
| 1 | 2020 | 846 | 27 | 0.0611 | 3 | 44 | 9.0006 | 0.0670 |
| 2 | 2021 | 862 | 28 | 0.0618 | 3 | 44 | 8.9483 | 0.0671 |
| 3 | 2022 | 879 | 28 | 0.0624 | 3 | 44 | 8.8962 | 0.0672 |
| 4 | 2023 | 896 | 29 | 0.0631 | 3 | 44 | 8.8441 | 0.0673 |
| 5 | 2024 | 913 | 29 | 0.0637 | 3 | 44 | 8.7920 | 0.0674 |
| 6 | 2025 | 930 | 30 | 0.0644 | 3 | 44 | 8.7400 | 0.0676 |
| 7 | 2026 | 948 | 30 | 0.0651 | 3 | 44 | 8.6881 | 0.0677 |
| 8 | 2027 | 966 | 30 | 0.0658 | 3 | 44 | 8.6363 | 0.0678 |
| 9 | 2028 | 985 | 31 | 0.0665 | 3 | 44 | 8.5845 | 0.0679 |
| 10 | 2029 | 1,004 | 31 | 0.0672 | 3 | 44 | 8.5328 | 0.0680 |
| 11 | 2030 | 1,023 | 32 | 0.0613 | 3 | 44 | 8.9836 | 0.0670 |
| 12 | 2031 | 1,042 | 32 | 0.0620 | 3 | 44 | 8.9314 | 0.0671 |
| 13 | 2032 | 1,062 | 33 | 0.0626 | 3 | 44 | 8.8792 | 0.0672 |
| 14 | 2033 | 1,083 | 33 | 0.0633 | 3 | 44 | 8.8271 | 0.0674 |
| 15 | 2034 | 1,104 | 34 | 0.0640 | 3 | 44 | 8.7751 | 0.0675 |
| 16 | 2035 | 1,125 | 34 | 0.0646 | 3 | 44 | 8.7232 | 0.0676 |
| 17 | 2036 | 1,146 | 35 | 0.0653 | 3 | 44 | 8.6713 | 0.0677 |
| 18 | 2037 | 1,168 | 35 | 0.0660 | 3 | 44 | 8.6195 | 0.0678 |
| 19 | 2038 | 1,191 | 36 | 0.0667 | 3 | 44 | 8.5677 | 0.0679 |
| 20 | 2039 | 1,213 | 36 | 0.0674 | 3 | 44 | 8.5161 | 0.0681 |

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Carpenter Street At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	$\begin{aligned} & \text { Un-normalized } \\ & \text { Crash } \\ & \text { Prediction }{ }^{1} \end{aligned}$	Recorded Incidents in T Years (N)	\# Years of Crash Data (T)	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	86	27	0.0298	0	44	12.5261	0.0066
1	2020	87	27	0.0300	0	44	12.4955	0.0066
2	2021	2,413	28	0.0302	0	44	12.4648	0.0067
3	2022	88	28	0.0304	0	44	12.4340	0.0067
4	2023	88	29	0.0306	0	44	12.4032	0.0067
5	2024	89	29	0.0308	0	44	12.3724	0.0068
6	2025	2,413	30	0.0867	0	44	7.3156	0.0124
7	2026	2,428	30	0.0873	0	44	7.2852	0.0124
8	2027	2,443	30	0.0878	0	44	7.2550	0.0124
9	2028	2,458	31	0.0884	0	44	7.2248	0.0125
10	2029	2,473	31	0.0890	0	44	7.1946	0.0125
11	2030	2,488	32	0.0896	0	44	7.1645	0.0125
12	2031	2,503	32	0.0902	0	44	7.1344	0.0126
13	2032	2,518	33	0.0908	0	44	7.1045	0.0126
14	2033	2,534	33	0.0914	0	44	7.0745	0.0127
15	2034	2,549	34	0.0920	0	44	7.0446	0.0127
16	2035	2,565	34	0.0926	0	44	7.0148	0.0127
17	2036	2,581	35	0.0932	0	44	6.9851	0.0128
18	2037	2,596	35	0.0938	0	44	6.9554	0.0128
19	2038	2,612	36	0.0944	0	44	6.9257	0.0128
20	2039	2,628	36	0.0950	0	44	6.8961	0.0129

${ }^{1}$ Derived from Appendix Table 1b

USDOT General Accident Prediction Model for Highway Z At-Grade Crossing

Year	Calendar Year	ADT	Daily Crossings	$\begin{aligned} & \text { Un-normalized } \\ & \text { Crash }^{\text {Prediction }}{ }^{1} \end{aligned}$	Recorded Incidents in T Years (N)	$\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data }(T) \end{aligned}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	911	27	0.0622	1	44	8.9093	0.0294
1	2020	917	27	0.0627	1	44	8.8770	0.0294
2	2021	922	28	0.0631	1	44	8.8447	0.0295
3	2022	928	28	0.0635	1	44	8.8124	0.0295
4	2023	934	29	0.0639	1	44	8.7802	0.0296
5	2024	939	29	0.0643	1	44	8.7480	0.0296
6	2025	945	30	0.0647	1	44	8.7158	0.0297
7	2026	951	30	0.0652	1	44	8.6837	0.0297
8	2027	957	30	0.0656	1	44	8.6516	0.0298
9	2028	962	31	0.0660	1	44	8.6195	0.0298
10	2029	968	31	0.0664	1	44	8.5874	0.0299
11	2030	974	32	0.0669	1	44	8.5554	0.0299
12	2031	980	32	0.0673	1	44	8.5234	0.0300
13	2032	986	33	0.0678	1	44	8.4914	0.0300
14	2033	992	33	0.0682	1	44	8.4594	0.0301
15	2034	998	34	0.0687	1	44	8.4275	0.0301
16	2035	1,004	34	0.0691	1	44	8.3956	0.0302
17	2036	1,011	35	0.0696	1	44	8.3638	0.0302
18	2037	1,017	35	0.0700	1	44	8.3320	0.0303
19	2038	1,023	36	0.0705	1	44	8.3002	0.0303
20	2039	1,029	36	0.0709	1	44	8.2685	0.0304
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								

[^22]| Year | Calendar Year | ADT | Daily Crossings | Un-normalized Crash Prediction ${ }^{1}$ | Recorded Incidents in T Years (N) | $\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data }(T) \end{aligned}$ | Formula
 Weighting
 Factor (To) | Crash
 Probability (B) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2019 | 89 | 27 | 0.1643 | 2 | 44 | 4.6667 | 0.0568 |
| 1 | 2020 | 91 | 27 | 0.1665 | 2 | 44 | 4.6194 | 0.0570 |
| 2 | 2021 | 3,537 | 28 | 0.5686 | 2 | 44 | 1.6166 | 0.0640 |
| 3 | 2022 | 3,605 | 28 | 0.0875 | 2 | 44 | 7.2737 | 0.0514 |
| 4 | 2023 | 3,674 | 29 | 81.3472 | 2 | 44 | 0.0123 | 0.0681 |
| 5 | 2024 | 3,744 | 29 | 164.3317 | 2 | 44 | 0.0061 | 0.0682 |
| 6 | 2025 | 3,816 | 30 | 249.0682 | 2 | 44 | 0.0040 | 0.0682 |
| 7 | 2026 | 3,889 | 30 | 335.5848 | 2 | 44 | 0.0030 | 0.0682 |
| 8 | 2027 | 3,964 | 30 | 423.9096 | 2 | 44 | 0.0024 | 0.0682 |
| 9 | 2028 | 4,040 | 31 | 514.0712 | 2 | 44 | 0.0019 | 0.0682 |
| 10 | 2029 | 4,117 | 31 | 606.0988 | 2 | 44 | 0.0016 | 0.0682 |
| 11 | 2030 | 4,196 | 32 | 700.0217 | 2 | 44 | 0.0014 | 0.0682 |
| 12 | 2031 | 4,277 | 32 | 795.8698 | 2 | 44 | 0.0013 | 0.0682 |
| 13 | 2032 | 4,359 | 33 | 893.6733 | 2 | 44 | 0.0011 | 0.0682 |
| 14 | 2033 | 4,442 | 33 | 993.4631 | 2 | 44 | 0.0010 | 0.0682 |
| 15 | 2034 | 4,527 | 34 | 1095.2703 | 2 | 44 | 0.0009 | 0.0682 |
| 16 | 2035 | 4,614 | 34 | 1199.1263 | 2 | 44 | 0.0008 | 0.0682 |
| 17 | 2036 | 4,703 | 35 | 1305.0633 | 2 | 44 | 0.0008 | 0.0682 |
| 18 | 2037 | 4,793 | 35 | 1413.1137 | 2 | 44 | 0.0007 | 0.0682 |
| 19 | 2038 | 4,885 | 36 | 1523.3105 | 2 | 44 | 0.0007 | 0.0682 |
| 20 | 2039 | 4,978 | 36 | 1635.6870 | 2 | 44 | 0.0006 | 0.0682 |

Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation
${ }^{1}$ Derived from Appendix Table 1a

Year	Calendar Year	ADT	$\begin{aligned} & \text { Daily } \\ & \text { Crossings } \end{aligned}$	Un-normalized Crash Prediction ${ }^{1}$	Recorded Incidents in T Years (N)	\# Years of Crash Data (T)	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	52	27	0.0230	0	44	13.6932	0.0055
1	2020	53	27	0.0233	0	44	13.6476	0.0055
2	2021	54	28	0.0235	0	44	13.6017	0.0056
3	2022	55	28	0.0238	0	44	13.5557	0.0056
4	2023	56	29	0.0240	0	44	13.5095	0.0056
5	2024	57	29	0.0243	0	44	13.4632	0.0057
6	2025	58	30	0.0245	0	44	13.4166	0.0057
7	2026	59	30	0.0248	0	44	13.3699	0.0058
8	2027	61	30	0.0251	0	44	13.3231	0.0058
9	2028	62	31	0.0253	0	44	13.2760	0.0059
10	2029	63	31	0.0256	0	44	13.2288	0.0059
11	2030	64	32	0.0259	0	44	13.1815	0.0060
12	2031	65	32	0.0261	0	44	13.1340	0.0060
13	2032	67	33	0.0264	0	44	13.0863	0.0061
14	2033	68	33	0.0267	0	44	13.0385	0.0061
15	2034	69	34	0.0270	0	44	12.9905	0.0061
16	2035	70	34	0.0273	0	44	12.9424	0.0062
17	2036	72	35	0.0276	0	44	12.8941	0.0062
18	2037	73	35	0.0278	0	44	12.8456	0.0063
19	2038	75	36	0.0281	0	44	12.7971	0.0063
20	2039	76	36	0.0284	0	44	12.7483	0.0064

Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation
${ }^{1}$ Derived from Appendix Table 1b
USDOT General Accident Prediction Model for Red Oak Road At-Grade Crossing

Year	Calendar Year	ADT	$\begin{gathered} \text { Daily } \\ \text { Crossings } \end{gathered}$	$\begin{aligned} & \text { Un-normalized } \\ & \text { Crash } \\ & \text { Prediction }{ }^{1} \end{aligned}$	Recorded Incidents in T Years (N)	$\begin{aligned} & \text { \# Years of } \\ & \text { Crash } \\ & \text { Data }(T) \end{aligned}$	Formula Weighting Factor (To)	Crash Probability (B)
0	2019	279	27	0.1320	1	44	5.4947	0.0349
1	2020	284	27	0.1334	1	44	5.4521	0.0349
2	2021	290	28	0.1348	1	44	5.4098	0.0350
3	2022	295	28	0.1621	1	44	4.7146	0.0362
4	2023	301	29	0.1639	1	44	4.6742	0.0363
5	2024	307	29	0.1658	1	44	4.6340	0.0364
6	2025	313	30	0.1677	1	44	4.5941	0.0364
7	2026	319	30	0.1696	1	44	4.5544	0.0365
8	2027	325	30	0.1715	1	44	4.5149	0.0366
9	2028	331	31	0.1734	1	44	4.4757	0.0366
10	2029	337	31	0.1754	1	44	4.4367	0.0367
11	2030	344	32	0.1774	1	44	4.3980	0.0368
12	2031	350	32	0.1794	1	44	4.3595	0.0368
13	2032	357	33	0.1814	1	44	4.3213	0.0369
14	2033	364	33	0.1835	1	44	4.2833	0.0370
15	2034	371	34	0.1855	1	44	4.2456	0.0371
16	2035	378	34	0.1876	1	44	4.2080	0.0371
17	2036	385	35	0.1898	1	44	4.1708	0.0372
18	2037	393	35	0.1919	1	44	4.1338	0.0373
19	2038	400	36	0.1941	1	44	4.0970	0.0373
20	2039	408	36	0.1963	1	44	4.0605	0.0374

[^23]		Calendar							
Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural	Factor (UR)	Fatal Accident	
Probability									

Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway

Fatal Accident Probability for Mineral Road At-Grade Crossing

| | Calendar | Daily
 Crossings | Formula
 Constant (CF) | Max
 Timetable
 Speed (MS) | \# of Thru
 Trains per
 Day (TT) | \# of Switch
 Trains Per
 Day (TS) | Urban Rural |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Factor (UR) | Fatal Accident | | | | | | |
| Probability | | | | | | | |

Fatal Accident Probability for Dewberry Road At-Grade Crossing

	Calendar							
Year	Dear	Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident
Probability								

Fatal Accident Probability for Short Road At-Grade Crossing								
	Calendar	Daily	Formula	Max Timetable	\# of Thru Trains per	\# of Switch Trains Per	Urban Rural	Fatal Accident
Year	Year	Crossings	Constant (CF)	Speed (MS)	Day (TT)	Day (TS)	Factor (UR)	Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875

Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway

Fatal Accident Probability for E Box School Loop At-Grade Crossing
$\left.\begin{array}{ccc:ccccc:c}\hline & \text { Calendar } & \begin{array}{c}\text { Daily } \\ \text { Crossings }\end{array} & \begin{array}{c}\text { Formula } \\ \text { Constant (CF) }\end{array} & \begin{array}{c}\text { Mimetable } \\ \text { Speed (MS) }\end{array} & \begin{array}{c}\text { \# of Thru } \\ \text { Trains per } \\ \text { Day (TT) }\end{array} & \begin{array}{c}\text { \# of Switch } \\ \text { Trains Per } \\ \text { Day (TS) }\end{array} & \text { Urban Rural } & \text { Factor (UR) }\end{array}: \begin{array}{c}\text { Fatal Accident } \\ \text { Pearability }\end{array}\right]$

Fatal Accident Probability for Oak Lawn At-Grade Crossing

Year	Calendar Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	$\begin{aligned} & \text { \# of Thru } \\ & \text { Trains per } \\ & \text { Day (TT) } \end{aligned}$	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875

Year	Calendar Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875

Fatal Accident Probability for Highway NN At-Grade Crossin

Year	Calendar Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875

Fatal Accident Probability for W Box School Loop At-Grade Crossing

| | Calendar | Daily | Formula | Max
 Timetable
 Crossings | \# of Thru
 Trains per | \# of Switch
 Constant (CF) | Speed (MS) | Day (TT) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Day (TS) $^{\text {Coar }}$| Urban Rural |
| :---: |
| Factor (UR) |$:$| Fatal Accident |
| :---: |
| Probability |

	Calendar	Daily	Formula	Max Timetable	\# of Thru Trains per	\# of Switch Trains Per	Urban Rural	Fatal Accident
Year	Year	Crossings	Constant (CF)	Speed (MS)	Day (TT)	Day (TS)	Factor (UR)	Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875

Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway

Fatal Accident Probability for Hummingbird Lane At-Grade Crossing

	Calendar							
Year	Mear	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural	
Factor (UR)	Fatal Accident							
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875
Source: Crash Prediction	based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway							

Fatal Accident Probability for Tandy Road At-Grade Crossing

Year	Calendar Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875

	Calendar	Daily	Formula	Max Timetable	\# of Thru Trains per	\# of Switch Trains Per	Urban Rural	Fatal Accident
Year	Year	Crossings	Constant (CF)	Speed (MS)	Day (TT)	Day (TS)	Factor (UR)	Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875

Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Fatal Accident Probability for Carpenter Street At-Grade Crossing

| | Calendar | Daily
 Crossings | Formula
 Constant (CF) | Max
 Timetable
 Speed (MS) | \# of Thru
 Trains per
 Day (TT) | \# of Switch
 Trains Per
 Day (TS) | Urban Rural | Factor (UR) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Fatal Accident

Fatal Accident Probability for Highway Z At-Grade Crossing

Year	Calendar Year Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	$\begin{aligned} & \text { \# of Thru } \\ & \text { Trains per } \\ & \text { Day (TT) } \\ & \hline \end{aligned}$	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.2	0.0736
1	2020	27	695	0.015	0.7096	1.409	1.2	0.0736
2	2021	28	695	0.015	0.7086	1.411	1.2	0.0736
3	2022	28	695	0.015	0.7075	1.413	1.2	0.0736
4	2023	29	695	0.015	0.7065	1.415	1.2	0.0736
5	2024	29	695	0.015	0.7055	1.418	1.2	0.0736
6	2025	30	695	0.015	0.7044	1.420	1.2	0.0736
7	2026	30	695	0.015	0.7034	1.422	1.2	0.0736
8	2027	30	695	0.015	0.7023	1.424	1.2	0.0736
9	2028	31	695	0.015	0.7013	1.426	1.2	0.0736
10	2029	31	695	0.015	0.7003	1.428	1.2	0.0736
11	2030	32	695	0.015	0.6992	1.430	1.2	0.0736
12	2031	32	695	0.015	0.6982	1.432	1.2	0.0736
13	2032	33	695	0.015	0.6972	1.434	1.2	0.0736
14	2033	33	695	0.015	0.6961	1.437	1.2	0.0736
15	2034	34	695	0.015	0.6951	1.439	1.2	0.0736
16	2035	34	695	0.015	0.6941	1.441	1.2	0.0736
17	2036	35	695	0.015	0.6930	1.443	1.2	0.0736
18	2037	35	695	0.015	0.6920	1.445	1.2	0.0736
19	2038	36	695	0.015	0.6910	1.447	1.2	0.0736
20	2039	36	695	0.015	0.6900	1.449	1.2	0.0736

Year	Calendar Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	3537	695	0.015	0.4328	2.311	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation								
Fatal Accident Probability for Dutch Hill Road At-Grade Crossing								
Year	Calendar Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	$\begin{aligned} & \text { \# of Thru } \\ & \text { Trains per } \\ & \text { Day (TT) } \end{aligned}$	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.015	0.6900	1.449	1.0	0.0875
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation								
Fatal Accident Probability for Red Oak Road At-Grade Crossing								
Year	Calendar Year	Daily Crossings	Formula Constant (CF)	Max Timetable Speed (MS)	\# of Thru Trains per Day (TT)	\# of Switch Trains Per Day (TS)	Urban Rural Factor (UR)	Fatal Accident Probability
0	2019	27	695	0.015	0.7107	1.407	1.0	0.0875
1	2020	27	695	0.015	0.7096	1.409	1.0	0.0875
2	2021	28	695	0.015	0.7086	1.411	1.0	0.0875
3	2022	28	695	0.015	0.7075	1.413	1.0	0.0875
4	2023	29	695	0.015	0.7065	1.415	1.0	0.0875
5	2024	29	695	0.015	0.7055	1.418	1.0	0.0875
6	2025	30	695	0.015	0.7044	1.420	1.0	0.0875
7	2026	30	695	0.015	0.7034	1.422	1.0	0.0875
8	2027	30	695	0.015	0.7023	1.424	1.0	0.0875
9	2028	31	695	0.015	0.7013	1.426	1.0	0.0875
10	2029	31	695	0.015	0.7003	1.428	1.0	0.0875
11	2030	32	695	0.015	0.6992	1.430	1.0	0.0875
12	2031	32	695	0.015	0.6982	1.432	1.0	0.0875
13	2032	33	695	0.015	0.6972	1.434	1.0	0.0875
14	2033	33	695	0.015	0.6961	1.437	1.0	0.0875
15	2034	34	695	0.015	0.6951	1.439	1.0	0.0875
16	2035	34	695	0.015	0.6941	1.441	1.0	0.0875
17	2036	35	695	0.015	0.6930	1.443	1.0	0.0875
18	2037	35	695	0.015	0.6920	1.445	1.0	0.0875
19	2038	36	695	0.015	0.6910	1.447	1.0	0.0875
20	2039	36	695	0.0	0.6900	1.449	1.0	0.0875

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113

Source: Crash Prediction
${ }^{1}$ Derived in Appendix 3

Injury Accident Probability for Mineral Road At-Grade Crossing

					Max			
Year	Calenda r Year	Daily Crossings	Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	Injury Accident Probability
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								
${ }^{1}$ Derived in Appendix 3								

Injury Accident Probability for Dewberry Road At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								oad-Highway

Year	Calenda r Year	Daily Crossings	Fatal Accident Probability ${ }^{1}$	Formula Constant	Max Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	Injury Accident Probability
0	2019	27	0.0875	4.28	0.401	1.265	1.0	0.2877
1	2020	27	0.0875	4.28	0.401	1.265	1.0	0.2877
2	2021	28	0.0875	4.28	0.401	1.265	1.0	0.2877
3	2022	28	0.0875	4.28	0.401	1.265	1.0	0.2877
4	2023	29	0.0875	4.28	0.401	1.265	1.0	0.2877
5	2024	29	0.0875	4.28	0.401	1.265	1.0	0.2877
6	2025	30	0.0875	4.28	0.401	1.265	1.0	0.2877
7	2026	30	0.0875	4.28	0.401	1.265	1.0	0.2877
8	2027	30	0.0875	4.28	0.401	1.265	1.0	0.2877
9	2028	31	0.0875	4.28	0.401	1.265	1.0	0.2877
10	2029	31	0.0875	4.28	0.401	1.265	1.0	0.2877
11	2030	32	0.0875	4.28	0.401	1.265	1.0	0.2877
12	2031	32	0.0875	4.28	0.401	1.265	1.0	0.2877
13	2032	33	0.0875	4.28	0.401	1.265	1.0	0.2877
14	2033	33	0.0875	4.28	0.401	1.265	1.0	0.2877
15	2034	34	0.0875	4.28	0.401	1.265	1.0	0.2877
16	2035	34	0.0875	4.28	0.401	1.265	1.0	0.2877
17	2036	35	0.0875	4.28	0.401	1.265	1.0	0.2877
18	2037	35	0.0875	4.28	0.401	1.265	1.0	0.2877
19	2038	36	0.0875	4.28	0.401	1.265	1.0	0.2877
20	2039	36	0.0875	4.28	0.401	1.265	1.0	0.2877

${ }^{1}$ Derived in Appendix 3
Injury Accident Probability for E Box School Loop At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113
	ash Predi Append	tion based	.S. Departmen	f Transpo	ion Accident	Prediction M	odel from Rail	ad-Highway

Injury Accident Probability for Oak Lawn At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Fatal Accident Probability ${ }^{1}$	Formula Constant	Max Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	Injury Accident Probability
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway${ }^{1}$ Derived in Appendix 3								

Year	Calenda r Year	DailyCrossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113

${ }^{1}$ Derived in Appendix 3
Injury Accident Probability for Highway NN At-Grade Crossing

Injury Accident Probability for W Box School Loop At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.265	1.0	0.2877
1	2020	28	0.0875	4.28	0.401	1.265	1.0	0.2877
2	2021	28	0.0875	4.28	0.401	1.265	1.0	0.2877
3	2022	29	0.0875	4.28	0.401	1.265	1.0	0.2877
4	2023	29	0.0875	4.28	0.401	1.265	1.0	0.2877
5	2024	30	0.0875	4.28	0.401	1.265	1.0	0.2877
6	2025	30	0.0875	4.28	0.401	1.265	1.0	0.2877
7	2026	30	0.0875	4.28	0.401	1.265	1.0	0.2877
8	2027	31	0.0875	4.28	0.401	1.265	1.0	0.2877
9	2028	31	0.0875	4.28	0.401	1.265	1.0	0.2877
10	2029	32	0.0875	4.28	0.401	1.265	1.0	0.2877
11	2030	32	0.0875	4.28	0.401	1.265	1.0	0.2877
12	2031	33	0.0875	4.28	0.401	1.265	1.0	0.2877
13	2032	33	0.0875	4.28	0.401	1.265	1.0	0.2877
14	2033	34	0.0875	4.28	0.401	1.265	1.0	0.2877
15	2034	34	0.0875	4.28	0.401	1.265	1.0	0.2877
16	2035	35	0.0875	4.28	0.401	1.265	1.0	0.2877
17	2036	35	0.0875	4.28	0.401	1.265	1.0	0.2877
18	2037	36	0.0875	4.28	0.401	1.265	1.0	0.2877
19	2038	36	0.0875	4.28	0.401	1.265	1.0	0.2877
20	2039	0	0.0000	4.28	0.401	1.265	1.0	0.3153

Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway
${ }^{1}$ Derived in Appendix 3

Year	Calenda rYear	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113

${ }^{1}$ Derived in Appendix 3
Injury Accident Probability for Hummingbird At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Fatal Accident Probability ${ }^{1}$	Formula Constant	Max Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	Injury Accident Probability
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113
ource: Derive	in Appendi	tion based	U.S. Departmen	of Transpor	tion Acciden	Prediction M	odel from Railr	oad-Highway

Injury Accident Probability for Tandy Road At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.0	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.0	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.0	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.0	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.0	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.0	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.0	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.0	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.0	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.0	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.0	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.0	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.0	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.0	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.0	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.0	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.0	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.0	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.0	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.0	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.0	0.3113
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								
${ }^{1}$ Derived in Appendix 3								

Year	Calenda r Year	DailyCrossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.000	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.000	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.000	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.000	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.000	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.000	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.000	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.000	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.000	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.000	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.000	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.000	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.000	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.000	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.000	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.000	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.000	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.000	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.000	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.000	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.000	0.3113

${ }^{1}$ Derived in Appendix 3
Injury Accident Probability for Carpenter Street At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0736	4.28	0.401	1.125	1.202	0.2790
1	2020	27	0.0736	4.28	0.401	1.125	1.202	0.2790
2	2021	2413	0.0736	4.28	0.401	1.125	1.202	0.2790
3	2022	28	0.0736	4.28	0.401	1.125	1.202	0.2790
4	2023	29	0.0736	4.28	0.401	1.125	1.202	0.2790
5	2024	29	0.0736	4.28	0.401	1.125	1.202	0.2790
6	2025	2413	0.0736	4.28	0.401	1.125	1.202	0.2790
7	2026	30	0.0736	4.28	0.401	1.125	1.202	0.2790
8	2027	30	0.0736	4.28	0.401	1.125	1.202	0.2790
9	2028	31	0.0736	4.28	0.401	1.125	1.202	0.2790
10	2029	31	0.0736	4.28	0.401	1.125	1.202	0.2790
11	2030	32	0.0736	4.28	0.401	1.125	1.202	0.2790
12	2031	32	0.0736	4.28	0.401	1.125	1.202	0.2790
13	2032	33	0.0736	4.28	0.401	1.125	1.202	0.2790
14	2033	33	0.0736	4.28	0.401	1.125	1.202	0.2790
15	2034	34	0.0736	4.28	0.401	1.125	1.202	0.2790
16	2035	34	0.0736	4.28	0.401	1.125	1.202	0.2790
17	2036	35	0.0736	4.28	0.401	1.125	1.202	0.2790
18	2037	35	0.0736	4.28	0.401	1.125	1.202	0.2790
19	2038	36	0.0736	4.28	0.401	1.125	1.202	0.2790
20	2039	36	0.0736	4.28	0.401	1.125	1.202	0.2790
ource: Derive	in Appendi	tion based	U.S. Departmen	of Transpor	tion Acciden	Prediction M	odel from Railr	oad-Highway

Injury Accident Probability for Highway Z At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0736	4.28	0.401	1.125	1.202	0.2790
1	2020	27	0.0736	4.28	0.401	1.125	1.202	0.2790
2	2021	28	0.0736	4.28	0.401	1.125	1.202	0.2790
3	2022	28	0.0736	4.28	0.401	1.125	1.202	0.2790
4	2023	29	0.0736	4.28	0.401	1.125	1.202	0.2790
5	2024	29	0.0736	4.28	0.401	1.125	1.202	0.2790
6	2025	30	0.0736	4.28	0.401	1.125	1.202	0.2790
7	2026	30	0.0736	4.28	0.401	1.125	1.202	0.2790
8	2027	30	0.0736	4.28	0.401	1.125	1.202	0.2790
9	2028	31	0.0736	4.28	0.401	1.125	1.202	0.2790
10	2029	31	0.0736	4.28	0.401	1.125	1.202	0.2790
11	2030	32	0.0736	4.28	0.401	1.125	1.202	0.2790
12	2031	32	0.0736	4.28	0.401	1.125	1.202	0.2790
13	2032	33	0.0736	4.28	0.401	1.125	1.202	0.2790
14	2033	33	0.0736	4.28	0.401	1.125	1.202	0.2790
15	2034	34	0.0736	4.28	0.401	1.125	1.202	0.2790
16	2035	34	0.0736	4.28	0.401	1.125	1.202	0.2790
17	2036	35	0.0736	4.28	0.401	1.125	1.202	0.2790
18	2037	35	0.0736	4.28	0.401	1.125	1.202	0.2790
19	2038	36	0.0736	4.28	0.401	1.125	1.202	0.2790
20	2039	36	0.0736	4.28	0.401	1.125	1.202	0.2790
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highw								

Year	Calenda r Year	Daily Crossings	Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	Injury Accident Probability
0	2019	27	0.0875	4.28	0.401	1.125	1.000	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.000	0.3113
2	2021	3537	0.0875	4.28	0.401	1.125	1.000	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.000	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.000	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.000	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.000	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.000	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.000	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.000	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.000	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.000	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.000	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.000	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.000	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.000	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.000	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.000	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.000	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.000	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.000	0.3113

Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway
Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation
${ }^{1}$ Derived in Appendix 3
Injury Accident Probability for Dutch Hill Road At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.000	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.000	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.000	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.000	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.000	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.000	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.000	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.000	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.000	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.000	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.000	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.000	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.000	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.000	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.000	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.000	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.000	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.000	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.000	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.000	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.000	0.3113
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								

Injury Accident Probability for Red Oak Road At-Grade Crossing

Year	Calenda r Year	Daily Crossings	Max					Injury Accident Probability
			Fatal Accident Probability ${ }^{1}$	Formula Constant	Timetable Speed (MS)	\# of Tracks for Factor (TK)	Urban-Rural Factor (UR)	
0	2019	27	0.0875	4.28	0.401	1.125	1.000	0.3113
1	2020	27	0.0875	4.28	0.401	1.125	1.000	0.3113
2	2021	28	0.0875	4.28	0.401	1.125	1.000	0.3113
3	2022	28	0.0875	4.28	0.401	1.125	1.000	0.3113
4	2023	29	0.0875	4.28	0.401	1.125	1.000	0.3113
5	2024	29	0.0875	4.28	0.401	1.125	1.000	0.3113
6	2025	30	0.0875	4.28	0.401	1.125	1.000	0.3113
7	2026	30	0.0875	4.28	0.401	1.125	1.000	0.3113
8	2027	30	0.0875	4.28	0.401	1.125	1.000	0.3113
9	2028	31	0.0875	4.28	0.401	1.125	1.000	0.3113
10	2029	31	0.0875	4.28	0.401	1.125	1.000	0.3113
11	2030	32	0.0875	4.28	0.401	1.125	1.000	0.3113
12	2031	32	0.0875	4.28	0.401	1.125	1.000	0.3113
13	2032	33	0.0875	4.28	0.401	1.125	1.000	0.3113
14	2033	33	0.0875	4.28	0.401	1.125	1.000	0.3113
15	2034	34	0.0875	4.28	0.401	1.125	1.000	0.3113
16	2035	34	0.0875	4.28	0.401	1.125	1.000	0.3113
17	2036	35	0.0875	4.28	0.401	1.125	1.000	0.3113
18	2037	35	0.0875	4.28	0.401	1.125	1.000	0.3113
19	2038	36	0.0875	4.28	0.401	1.125	1.000	0.3113
20	2039	36	0.0875	4.28	0.401	1.125	1.000	0.3113
Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway								

APPENDIX E
Economic Analysis Tables
nul

Economic Analysis \& Land Use Appendix

Section 1 - Rogersville

Table34 provides a projection for projected job growth and annual earnings average specifically for Rogersville. Note that some industry areas in Rogersville during this period may experience no change or negative change in job growth. As the intent of this section of the study is to determine future land use needs, only industries with positive job growth through 2029 are used.

Table 34 - Rogersville Projected Jobs by Industry (2019 - 2029)			
Industry	2019-2029 Projected Job Change	Average Earnings per Job (2018)	Projected Job Change x Average Earnings
Manufacturing	+174	$\$ 45,428$	$\$ 7,904,000$
Construction	+61	$\$ 35,198$	$\$ 2,147,000$
Health Care and Social Assistance	+58	$\$ 37,561$	$\$ 2,179,000$
Accommodation and Food Services	+22	$\$ 14,535$	$\$ 320,000$
Transportation and Warehousing	+24	$\$ 68.280$	$\$ 1,639,000$
TOTAL	339		

Section 2 - Fordland

Table 35 provides a projection specifically for Fordland. Note that some industries in Fordland during this period may experience no change or negative change in job growth. As the intent of this section of the study is to determine future land use needs, only industries with positive job growth through 2029 are used.

Table 35 - Fordland Projected Jobs by Industry (2019-2029)			
Industry	2019-2029 Projected Job Change	Average Earnings per Job (2018)	Projected Job Change x Average Earnings
Wholesale Trade	+41	$\$ 92,446$	$\$ 3,790,000$
Construction	+1	$\$ 35,198$	$\$ 35,000$
Health Care and Social Assistance	+49	$\$ 37,561$	$\$ 1,840,000$
Retail Trade	+9	$\$ 29,981$	$\$ 270,000$
Transportation and Warehousing	104	$\$ 68.280$	$\$ 273,000$
TOTAL	+4		$\$ 6,208,000$

Section 3 - Diggins

Table 36 Projected Additional Jobs by Industry (2019 - 2029)				
	Rogersville	Fordland	Seymour	TOTAL
Manufacturing	174	-	105	279
Wholesale Trade	-	41	-	41
Construction	58	1	15	74
Health Care and Social Assistance	22	49	13	84
Retail Trade	-	9	-	37
Accommodation and Food Services	22	-	10	39
 Warehousing	24	4	160	564
Total	300	104		38

Table 37
Estimated 2019 Population \& Percent of Total Population by City

Municipality	Estimated 2019 Population	\% of Population
Rogersville	3,883	55%
Fordland	862	12%
Diggins	327	5%
Seymour	2,016	28%
TOTAL	7,088	100%

Table 38 Diggins Job Growth (5\%)		
Industry Sector	Total Employment Growth Outside of Diggins (Table 21)	Job Growth in Diggins (at 5\% of population in the study corridor)
Manufacturing	279	14
Wholesale Trade	41	2
Construction	74	4
Health Care and Social Assistance	84	4
Retail Trade	9	0
Accommodation and Food Services	39	2
 Warehousing	564	2
Total		28

Fordland \& Diggins Projected Jobs by Industry (2019-2029)			
Industry Sector	Employment Growth by Industry in Fordland	Employment Growth by Industry in Diggins (38\% of Fordland's population)	
Manufacturing	0	0	
Wholesale Trade	41	16	
Construction	1	0	
Health Care and Social Assistance	49	19	
Retail Trade	9	3	
Accommodation and Food Services	0	0	
 Warehousing	4	2	
Total	104	40	

Section 4 - Seymour

Table 40 provides a projection specifically for Fordland. Note that some industries in Fordland during this period may experience no change or negative change in job growth. As the intent of this section of the study is to determine future land use needs, only industries with positive job growth through 2029 are used.

Table 40 - Seymour Land Use Projections by Industry (2019-2029)				
Industry Sector	2019-2029 Projected Job Change	Average Earnings per Job (2018)	Projected Job Change x Average Earnings	
Manufacturing	+105	$\$ 45,428$	$\$ 4,770,000$	
Construction	+15	$\$ 35,198$	$\$ 528,000$	
Health Care and Social Assistance	+13	$\$ 37,561$	$\$ 488,000$	
Acommodation and Food Services	+17	$\$ 14,535$	$\$ 247,000$	
Transportation and Warehousing	+10	$\$ 68.280$	$\$ 682,000$	
TOTAL	160		$\$ 6,715,000$	

APPENDIX F

U.S. 60 Corridor Resiliency Planning

Webster County, MO

U.S. HIGHWAY 60
 CORRIDOR \& AT-GRADE RAILWAY CROSSING MASTER PLAN

September 30, 2019

SECTION V - CORRIDOR RESILIENCY PLANNING

IN PARTNERSHIP WITH:
City of Rogersville, MO
City of Fordland, MO
Village of Diggins, MO
City of Seymour, MO
Seymour Special Road District

TABLE OF CONTENTS

I- Introduction 1
Purpose 1
Background. 1
II - Regional Resiliency Planning 2
Highway Operations 2
Rail Operations 2
Military Operations 3
Natural Disaster Planning \& Mitigation 3
III - Local Resiliency Planning 3
Highway Operations 3
Proximity of U.S. 60 \& BNSF Rail Line 4
Emergency Response \& Relief 5
Agricultural Communities 6
Geological Features. 6
IV - Scenario Based Planning. 7
V - Recommended Improvements. 8
Strategic U.S. 60 Improvements. 8
Rail Crossing Safety Improvements. 9
VI - Implementing a Resilient Corridor.... 9
Resilient Corridor Improvements Summary Chart 10

I - Introduction

Purpose

The U.S. Highway 60 Corridor and At-Grade Rail Crossing Master Plan has been completed in order to prepare a longterm plan for a 22 -mile highway/rail corridor in southern Webster County, Missouri, with the end goal of limited access freeway status for U.S. 60. The scope of this study examined the impacts of the proximity of U.S. 60 and the BNSF Railway Thayer-North line. The BNSF Railway runs adjacent to U.S. 60 throughout much of Webster County resulting in high impacts on safety, connectivity, and regional resilience.
The Southwest Missouri Council of Governments (SMCOG) expanded the study to include economic resiliency planning, natural-disaster mitigation planning, and recovery efforts along the corridor. Natural disaster and emergency-event risks will be identified and assessed for the role the U.S. 60 and rail corridor plays in regional disaster recovery and relief efforts, primarily as an emergency relief route for Interstate 44.

Background

The section of U.S. 60 under review is located just east of Springfield, Missouri, and serves as a major transportation arterial running east-west across the entire state. Locally, U.S. 60 serves as the major commuter route for the communities of Rogersville, Fordland, Diggins, and Seymour (from west to east). U.S. 60 is currently a four-lane divided highway with 49 at-grade intersections within the study limits, of which 24 are full-access and $\mathbf{2 5}$ are partial access. The highest average daily traffic (ADT) for U.S. 60 is $\mathbf{2 3 , 2 2 5}$ near Rogersville. The estimated populations of these communities are 3,649 in Rogersville, 837 in Fordland, 312 in Diggins, and 1,993 in Seymour' .
The BNSF Thayer-North line is an essential segment of the east-west rail network, generating major economic impacts related to the transportation of freight from Oakland/Los Angeles to St. Lovis/ Memphis/Atlanta. The resulting high rail traffic impacts local communities on a daily basis, with 36 at-grade crossings within the study limits, 12 of which function as unsignalized private crossings.
The safety of the U.S. 60 corridor through Webster County is a major concern for area stakeholders, with $\mathbf{6 2 4}$ crashes occurring on U.S. 60 since 2012, including 21 fatalities. Forty-four (44) train-vehicle crashes have occurred at the at-grade rail crossings since 1975, with 15 resulting in fatalities.

Figure 1 - Webster County Regional Location Map

[^24]
II - Regional Resiliency Planning

Highway Operations

Missouri's top three (3) major routes for east-west travel across the state are: Interstate $70(1-70)$ in the North-central from St. Louis to Kansas City, Interstate 44 (I-44) from St. Louis to Joplin, and U.S. 60 from Sikeston to Seneca. Nationally, U.S. 60 is part of the major east-west transcontinental highway spanning over 2,600 miles from southwestern Arizona to the Atlantic Coast². Locally, U.S. 60 is the lifeline for southern-Missouri communities to maintain vital connectivity and it fuels much of the local communities' economic base.

In the Missouri South-Central and Southwest Regions, I-44 and U.S. 60 are vital components of transportation infrastructure. I- 44 services approximately 40,000 vehicles daily, with freight trucks making up almost 30\% or 12,000 of the Average Daily Traffic (ADT). U.S. 60 services approximately 23,000 vehicles daily, with nearly 1,900(8\%) trucks ${ }^{3}$.
With over $\mathbf{6 0 , 0 0 0}$ vehicles traveling east or west through Webster County daily, it is imperative to consider the traffic operations and safety impacts associated with a major closure or delay on one of these roadways. Major closures and delays have historically occurred during times of flooding, road construction, or major vehicle collisions, resulting in significant traffic diversion to alternate roadways. In such cases, I-44 traffic is diverted to U.S. 60 and vice versa using several north-south highways and local roadways, including U.S. 65, U.S. 63, Route B, Route A, and many other local collectors. Traffic diversion on adjacent infrastructure often leads to overloading roadway capacities, resulting in significant traffic delays, heightened safety risks, and significant economic losses.

Rail Operations

The BNSF Railway's Thayer-North line through Webster County is vital to the connectivity of the BNSF national rail network. The Thayer-North line is the primary route that carries coal and freight from the western U.S. to the southeast region, connecting the major hubs of Memphis, Birmingham, and Atlanta. The rail line through Webster County is a component of one of only seven Class I railroads in the U.S., that combined, generated $\$ 490$ million of revenue in 2018. The Federal Highway Administration recently forecasted that U.S. rail-freight shipments will increase $\mathbf{3 5 \%}$ to 24.1 billion tons, from 2017 to 2040. Missouri alone reports shipping approximately 409.8 million tons of freight in $\mathbf{2 0 1 7}$, and generated nearly $\mathbf{\$ 2 1 9 . 5}$ billion in annual economic activity, making the railroad essential to both the national and state economies ${ }^{4}$.

An emergency incident due to train derailment, vehicle-train collision, hazardous material spill, or flooding event occurring on the Thayer-North line would be determinantal to the movement of freight across the country. It is critical to the regional and nation rail network to maintain a resilient corridor along the Thayer-North line in Webster County, supporting the safe and efficient delivery of high-dollar freight across the country.
The impacts of train rerouting due to an incident would result in loss of significant time, resources, and revenue. While the rail throughout Missouri is vital to the local, regional, and national economies, the Thayer-North line through Webster County plays a more specific and critical role in these economies along the railroad.

[^25]
Military Operations

The U.S. Army's Fort Leonard Wood military base is located along I-44 in Pulaski County, approximately 70 miles east of Webster County near St. Robert, MO. The Army utilizes this location for many military operations training and strategic military planning. In the event of a military mobilization from Fort Leonard Wood, I-44 is the primary access route, making it essential for all military transport to both the east and west. Any incident that results in the temporary closure of I-44 would require the diversion of essential military personnel and equipment and potentially result in a high-cost delay, given the variety of circumstances that require military mobilizations.

Natural Disaster Planning \& Mitigation

Webster County is located in an area prone to many different natural disasters, including flooding, tornados, earthquakes, and winter storms. The climate and weather variations present the need for municipalities and agencies to be prepared for all types of disasters that may occur in surrounding communities.
In the event of a natural disaster or other emergency events, I-44 and U.S. 60 become the primary routes for resources to reach the affected areas. Detouring from I-44 to U.S. 60 puts a significant strain on the surrounding roadway networks. Several roadways along the U.S. 60 corridor contribute to the connectivity of the region, the most notable of which are Highway B and Highway A.
Highway B in Rogersville connects traffic from the western end of the county, encompassing 15 miles of roadway to l-44 in Northview, Missouri. Highway A spans the 13.5-mile distance between to join Marshfield and Diggins, providing efficient connection from I-44.
Thus, mitigation measures are needed to prevent, or at least reduce, the adverse operational and economic impacts during l-44 diversions.

III - Local Resiliency Planning

U.S. 60 is an essential and vital roadway for both regional and local connectivity in Southern Webster County. Each local community within the study limits heavily relies on U.S. 60 as the primary access in and out of each community and its conveyance of high traffic volumes to support the economic base. It is crucial to the survival and growth of each community that U.S. 60 maintains the capacity and efficient traffic flow for daily function of businesses. As improvements are developed to create a safer and more resilient corridor, several factors should be considered to minimize the adverse impacts to the local communities of Rogersville, Fordland, Diggins, and Seymour.

Highway Operations

In addition to transcontinental, east-west travel in southern Missouri, U.S. 60 serves as the primary route for commuters, local truck transporters, and recreational travelers. As proposed improvements were developed, careful consideration was taken to avoid land locking parcels and to minimize the impacts of adverse travel for local residents. With the long-term corridor vision of a limited access freeway status, considerable focus was placed on maintaining access to local businesses and residential areas, by strategically locating outer access roads along U.S. 60.

As recommended in this plan, the ultimate goal in obtaining a limited access freeway will result in the elimination of all 49 at-grade road crossings, and all access would be consolidated around eight (8) interchanges or overpasses along the 22-mile stretch of the U.S. 60 corridor. Outer access roads between several of the interchanges are proposed, providing connection from local roadways to U.S. 60.

The proposed outer road system increases safety through the elimination of numerous at-grade highway-rail crossings. While the elimination of at-grade highway-rail crossings slightly increases some travel times, the resulting safety increases and potential highway-rail crashes are reduced. These improvements and resulting consolidation would also be supported by a majority of the local communities throughout the corridor ${ }^{5}$.
Many local roadways and minor arterials provide regional connection to adjacent counties and communities. These roadways are essential to the daily traffic flow of these communities and should maintain access to U.S. 60. Though these local routes are often redundant, they contribute to a resilient transportation network by allowing for multiple access routes and minimizing the required adverse travel resulting from a closure on I-44 or U.S. 60.

HIGHWAY B - ROGERSVILLE

Highway B is a two-lane major collector that connects I-44 in Northview to U.S. 60 in Rogersville and connects many parts of rural Webster County to these major routes. Additionally, Highway B serves as an additional Incident Relief Route for U.S. 60 and I-44. Highway B near Rogersville currently services over 2,300 vehicles daily.

HIGHWAY Z - FORDLAND

Highway Z is a two-lane highway that connects directly to U.S. 60 in Fordland and serves north-south traffic to various residential and agricultural areas. Highway Z is also a direct route south to Highway 14, an east-west route in Christian County that extends east to Ava (Douglas County) or west to Highway 65 in Ozark. Currently, Highway Z services approximately 1,000 vehicles daily. Highway Z crosses several low-water streams that often flood during periods of heavy rain, forcing traffic to go north to U.S. 60 to travel east-west. Additionally, the intersection at U.S. 60 and Highway Z holds water in the driving lanes during high rainfall events, causing significant concern for vehicle hydroplaning ${ }^{6}$.

HIGHWAY A - DIGGINS

Highway A is a two-lane major collector that extends from U.S. 60 in Diggins north to Marshfield, eventually connecting to I-44. Highway A is a major north-south route for Webster County and is experiencing daily traffic increases as vehicle navigation systems direct motorists to the U.S. 60-to-l-44 connection, resulting in an increase in heavy truck traffic. This creates significant concern for both capacity and safety as traffic density continues to increase. Traffic flow on Highway A is also a route heavily utilized by agricultural buggies traveling from farms and homesteads to various businesses in Diggins and Seymour. Proposed improvements call for shoulder pull-offs for slow moving buggies to pull out of the way of vehicular traffic, reducing delays and traffic congestion along the heavily traveled roadway. Highway A currently services approximately 2,600 vehicles daily.

HIGHWAY K - SEYMOUR

Highway K is a two-lane major collector in Seymour that extends south from U.S. 60 to Ava in Douglas County. Highway K is a secondary route to U.S. 60 , with Highway 5 to Mansfield as the primary route, and is heavily utilized as a rural truck traffic route for logging and quarry trucks. Highway K services approximately 900 vehicles daily.

Proximity of U.S. 60 \& BNSF Rail Line

The BNSF Thayer-North line varies in proximity to U.S. 60 from approximately 65 feet at the closest at-grade crossing to over 750 feet at the farthest at-grade crossings. At the closer distances, vehicular traffic offen queues onto U.S. 60 after turning onto an adjacent roadway during times of rail traffic, creating significant rear-end collision risk. As traffic volumes on the railroad and highway continue to increase, there is heightened concern for safety along the corridor.

Figure 4 - The BNSF Railway varies in proximity to U.S. 60, as close as 65' at some locations.
5. United States Geological Service
6. Webster Co. U.S. 60 Corridor Study, Public Meetings \#2

The proximity of the BNSF Railway to U.S. 60 currently involves maintaining local connectivity and access at 36 highway-rail at-grade crossing. The recommended improvements propose U.S. 60 interchanges and railroad overpasses as grade-separated crossings and highway access points, minimizing the travel-time delay and reduce vehicle traffic through at-grade crossings. Additionally, the implementation of the proposed improvements and outer access roads reduces the need for these crossings, resulting in a more efficient rail line, provide an increased safety benefit, and a redundant and parallel route to U.S. 60 for incident relief.
In addition to connectivity, the proximity of the BNSF Railway to U.S. 60 reduces access to vital community resources. In times of severe weather, a Federal Emergency Management Agency's (FEMA) Safe Room is open to the public in the City of Seymour. In the spring of 2014, Seymour citizens report a stalled train during a tornado warning which resulted in several vehicles trapped on the south side of the tracks, unable to access the FEMA Safe Room, and threatened the safety of many citizens ${ }^{\top}$.

Emergency Response \& Relief

U.S. 60 is essential for emergency-response situations in each of the four (4) local communities and parts of rural Webster County. The nearest hospital is in Springfield, nearly 13 miles away from the western Webster county line. For emergency vehicles to respond to calls efficiently within Webster County, they most often utilize U.S. 60. Webster County has several emergency response services, including Webster County Sheriff, Fordland Police, Rogersville Police, Seymour Police, Seymour Fire, and Southern Webster County Fire District. Emergency Medical Services are managed by the Cox Ambulance District.
Many calls requesting emergency response in southern Webster County are related to motor vehicles on U.S. 60. In 2018, Webster County emergency services reported over 3,200 occurrences where emergency personnel responded to U.S. 60 for various needs, including routine traffic stops, wrong way drivers, motor vehicle accidents, vehicle pursuits, or criminally suspicious persons. In total, Webster County Police and Fire services responded to approximately 150 calls in 2018 for motor vehicle accidents, fires, or medical assistance ${ }^{8}$. This only includes services dispatched by Webster County 911 and does not include the many additional responses by the Logan-Rogersville Fire Protection District, Cox Health Ambulance District, or Missouri State Highway Patrol.

EMERGENCY ACCESS POINTS

In planning for future improvements, emergency personnel have requested that aggregate turnarounds be implemented alongside the limited access freeway conversion, in effort to maintain adequate emergency access and reduce response time delays. The Fordland Police Department reports using Highway Z as a turnaround location on U.S. 60 when patrolling the area and responding to calls. Southern Webster County Fire Protection District vehicles travel along U.S. 60 to use Highway Z in order to access the south side of the county. Highway Z is considered a dangerous intersection, significantly increasing the traffic safety risk to first responders who utilize this location to turn around.
The proximity of the BNSF Railway to U.S. 60 creates several conflicts for emergency response access. When rail traffic is present during emergency response calls, it often slows emergency response, forcing responders to search for a different route, or wait until trains pass, resulting in the lifesaving aid being delayed. This risk is heightened in Seymour, where the town is divided by the rail. Both the Seymour Fire Department and Southern Webster County Fire Stations are located south of the tracks, potentially blocking vital fire and medical response services from accessing calls originating north of the tracks. Additionally, the Webster County Fire District is a volunteer department, meaning call response could also be impacted in the delay for volunteers to reach the fire station.
Emergency response services are a vital component of resilient communities, making it imperative that delays to emergency requests are minimized, and efficient routes of travel are maintained. The proposed grade-separations would provide unimpeded access across the railroad for emergency vehicles.

[^26]
Agricultural Communities

Southern Webster County is home to many different economic bases and communities, including industrial, commercial, and agricultural. The rural areas of Webster County are home to many crop and livestock farms, which are an essential way of life for much of the county.
With a significant portion of the population agriculturally based, it is vital to consider the importance of the roadway transportation network to the efficient travel of farm equipment. Many local and rural roadways service many vehicle types including passenger cars, freight trucks, logging trucks, farm tractors and equipment, and agricultural horse and buggies.

Figure 5 - Agricultural Horse \& Buggy shown driving on shoulder of U.S. 60 near Seymour

Approximately 900 agricultural families that utilize buggies as a mode of travel reside in southern Webster County ${ }^{9}$ in the Diggins and Seymour areas. This mode of travel creates a heightened safety risk along local roadways and places significant strain on roadway pavement surfaces causing increased deterioration. The mix of slow-moving vehicles, heavy farm equipment, and buggies integrated with common traffic increases the crash potential and reduces the safety of all travelers on the roadways.

Additionally, agricultural horses and buggies traveling on paved asphalt roadways increase deterioration rates, resulting in pavement repairs and costs to occur more frequently. The steel horseshoes used to protect the horse's hooves create ruts (troughs) in the pavement due to repeated exposure, resulting in water collecting on the pavement surfaces. During colder months, freezing occurs and causes water to expand in the pavement and results in longitudinal cracking, significantly decreasing pavement lifespan.
The proposed improvements would reduce the safety risks associated with agricultural vehicles and equipment traveling on the existing roadway network. The implementation of an interchange at Highway A and overpass at Short Road would eliminate these slow-moving vehicles on U.S. 60, and would divert this traffic to a new outer road system on either side of U.S. 60. Outer roads would be constructed with aggregate shoulders to create separation for regular vehicular traffic and slow-moving agricultural horses and buggies. The overpass at Short Road would provide adequate distance between interchange access points on U.S. 60 at Highway A and West Clinton Avenue in Seymour.

Geological Features

Southwest Missouri is known for its highly karst topography formed from the underlying limestone bedrock formations below the surface. As limestone is worn away by water, underground crevices form and eventually lead to the land surface collapsing due to insufficient structural support, resulting in what is known as a sinkhole ${ }^{10}$. Sinkholes can be as little as a small depression in the ground to a large open crater (collapsed) in the surface and are often termination points for surface drainage.
Sinkholes are often slow to drain, especially when the groundwater table is high or during periods of heavy rainfall. This causes the surrounding land and drainage channels to flood and hold water for a longer period of time than surrounding drainage termini.

Webster County currently has 59 known sinkholes in the county, with many along I-44 and the U.S. 60 corridor. With sinkholes being prominent in the area, it is often difficult to predict the recession of floodwaters and sometimes results in flooding of non-flood-prone areas. There is concern when sinkholes occur near major roadways, and as to how drainage will be mitigated so that there are minimal impacts to traffic.

Figure 6 - Known Sinkholes in Webster County

[^27]
IV - Scenario Based Planning

As traffic continues to increase, it is essential to identify and address the impacts and learn from incidents that have occurred in the past in order to develop a resilient infrastructure in the event of future incidents. The following major historical incidents have had a significant impact on traffic flow in Webster County on I-44 and U.S. 60:

I-44 FLOODING

In April of 2017, approximately 50 miles of I-44 were closed due to flooding. Just northeast of Webster County, the Gasconade River reached a record setting 39.74 feet ${ }^{11}$, resulting in both directions of I-44 being shut down ${ }^{12}$ and destroyed pavement. This is the third time in the past six years that the Gasconade River has reached Major Flood Stage, with the previous occurrences being in 2013 \& 2015.
In response to the closures, drivers were advised to use I-70 from Kansas City to St. Lovis. However, I-44 traffic had to be diverted to Route 63, U.S. 60 , and Route 360 , creating a significant capacity strain and heightened safety risk on these roadways.

U.S. 60 FLOODING NEAR ROGERSVILLE

The same rainfall event that closed I-44 in April of 2017, also closed the westbound lanes of U.S. 60 just west of Rogersville for more than a week. The flooding occurred in Greene County near the Webster Country line. Pairing the reduced capacity from diverted I-44 traffic and U.S. 60 from a four-lane highway to a two-lane highway, caused significant traffic delays for miles.
There are two major contributing factors to flooding at this location. The first is the grade differential between the eastbound and westbound lanes. The eastbound lanes are well above the elevation of the westbound lanes, creating a natural ponding area. The second is a slow-draining sinkhole just north of U.S. 60 that exacerbates the already natural ponding area.

I-44 WINTER STORM VEHICLE PILEUP

In February of 2018, an ice storm caused a massive pileup of vehicles to block all eastbound lanes of traffic on I-44 near Conway, Missouri. The blockage produced several hours of delays, multiple injuries, and one fatality. Over one hundred vehicles were involved.
In response to the heavy traffic detainment, vehicles were rerouted south along Highway A in Marshfield and Highway B in Northview, to U.S. 60, allowing drivers to continue traveling east. U.S. 60 was strained to accommodate the significantly larger traffic volumes, while maintaining efficient local connectivity in the region.

ECONOMIC/INDUSTRY TRENDS

Figure 7-1-44 at Gasconade River in Laclede County, MO in Spring 2017. Photo by KSPR News.

Figure 8 - U.S. 60 Flooding near Rogersville in Spring 2017. Photo by KSPR News.

Figure 9 - Aerial view of the 1-44 winter storm pileup near Conway, MO on February 5, 2018. Photo by Conway Volunteer Fire Department.

> According to the latest projections from the USDOT, the total volume of U.S. rail freight is expected to increase by $\mathbf{3 5 \%}$ from 2017 to 2040^{13}, and the total highway freight volume is expected to increase by $\mathbf{4 9 \%}$ by 2045^{14}. Additionally, the population growth of Webster County has an average annual value of 1.35% since 2011^{15}. These forecasts emphasize the need to reduce the exposure risk at highway-rail crossings and highway intersections and increase the safety, capacity, and efficiency of the transportation network.

[^28]The construction of interchanges, highway-rail grade separations, and outer road networks throughout the corridor would greatly enhance the connectivity of the region, provide essential access for emergency response vehicles, and minimize delays and roadway hazards on U.S. 60 in Webster County, thereby enhancing the resiliency of U.S. 60 in accommodating natural-disaster and emergency events.

V - Recommended Improvements

Strategic U.S. 60 Improvements

The U.S. 60 Corridor Study resulted in the conceptual development of strategic improvements to attain a limited-access freeway. Throughout the study, each improvement was evaluated based on certain criteria, including roadway and railway safety enhancements, economic development, life-cycle costs and maintenance, regional and local connectivity, community and stakeholder support, and community resiliency.
Recommended improvements were determined based on traffic capacity, safety priorities, and leveraging funding mechanisms. The proposed long-term solution envisions phased implementation of the entire corridor to freeway status in 30 to 40 years. Specific Improvements are recommended based on targeted impacts towards improving resiliency and enhancing the transportation systems to better accommodate emergency. The key areas within the study limits have been identified as having the most significant benefits towards maintaining a safe and efficient transportation network during emergency and disaster events. A complete list of improvements for the Corridor Master Plan is listed in previous chapters (Corridor Master Plan).

Figure 10 - Strategic Improvements to the U.S. 60 Corridor to Improve Regional Resiliency

IMPROVEMENTS AT HIGHWAY A
With an ADT of 2,590, the intersection of U.S. 60 and Highway A in Diggins has the highest traffic volumes of any roadway intersection throughout the corridor. An interchange at this location, paired with the construction of an outer road system connecting to the rest of the corridor, would allow vehicles to access U.S. 60 more safely and efficiently.
The proposed outer road system would reduce the need for agricultural horses and buggies to travel on the shoulders of U.S. 60, reducing safety hazards, damage to roadways, and traffic delays. Additionally, an overpass near Short Road in Diggins would provide grade-separated north-south access across U.S. 60.

An interchange at this location would also provide a positive economic benefit as a result of the increased safety and reduced travel-time delay. As traffic increases and navigational systems route traffic from U.S. 60 along Highway A to I-44 in Marshfield, these improvements would likely generate further economic opportunities around the interchange location. In the event of future detours from I-44 as an Incident Relief Route, an interchange would greatly reduce the safety risk and travel-time delay associated with the high traffic loading.
In addition to the construction of an interchange, implementing shoulder pull-offs along Highway A throughout the agricultural community provides an opportunity for slow-moving horses and buggies to move out of the way of motor vehicle traffic and reduce traffic congestion and potential safety conflicts.

U.S. 60 PROFILE ADJUSTMENT

PRIORITY
\#2
The U.S. 60 flooding that occurred in 2017 (Scenario Based Planning) resulted in the closure of the westbound lanes and traffic being diverted to a single lane, head-on to traffic in the eastbound lanes. Raising the roadway profile and improving the drainage system of U.S. 60 in this area just east of Farm Road 213 (Greene County) would significantly reduce the flooding potential. These improvements would help maintain efficient traffic flow in periods of record flooding, reducing the travel-time delay and safety risk associated with potential flooded roadways and temporary lane configurations to accommodate detoured traffic. While these improvements would be made to the Greene County section of U.S. 60, the corridor throughout Webster County would significantly benefit.

INTERCHANGE AT HIGHWAY Z

The construction and implementation of an interchange, railroad overpass, and outer road system at Highway Z in Fordland would allow for the removal of six (6) at-grade roadway intersections and at-grade highway-rail crossings. There have been 21 recorded vehicle crashes since 2012 and three (3) recorded train-vehicle accidents since 1990.

An interchange at Highway Z would eliminate the safety risk associated with these at-grade intersections and rail crossings and create a single efficient access point to U.S. 60. The construction of an overpass would also eliminate the safety concern attributed to intersection flooding at Highway Z.

Additionally, high-friction pavement treatment is recommended in Fordland along the S-curves of the U.S. 60 railroad overpass between Highway FF (Burks St.) and Highway Z to reduce vehicle hydroplaning in this area.

SEYMOUR RAILROAD OVERPASS

PRIORITY
$\# 4$
As the City of Seymour is currently divided by the BNSF Railway, the construction and implementation of a railroad overpass would maintain local connectivity and provide necessary access in the event of all at-grade crossings being simultaneously closed. Additionally, the implementation of an overpass at Summit Avenue and Highway K would present the opportunity for residential and commercial growth south of the railroad, providing an additional access point and reduced travel time delay to the heart of the city and U.S. 60.
An overpass at this location would address the concerns brought forth in the Public Involvement phase regarding the access to the FEMA Safe Room by providing a route over the railroad in the event of a stalled train during severe weather events.

Rail Crossing Safety Improvements

The proposed improvements along the 22 -mile stretch of the U.S. 60 corridor would result in the closure of 14 at-grade highway-rail crossings and safety improvements to four (4) crossings. The construction of an outer road system adjacent to U.S. 60 and the BNSF Railway would allow for traffic to reach grade-separated access points on U.S. 60 .

The elimination of at-grade crossings provides a positive safety benefit to the U.S. 60 corridor and BNSF Thayer-North line. The proposed improvements are expected to provide increased efficiency and safety of the rail line and eliminate travil-time delays for motor vehicles waiting during rail traffic at highway-rail crossings.

VI - Implementing a Resilient Corridor

As funding becomes available, the recommended improvements should be strategically implemented in prioritized phases in order to maintain a resilient network, utilize U.S. 60 as the primary Incident Relief Route, and prepare the transportation network for impacts to the surrounding area in the event of emergency or natural-disaster scenarios.
The Highway A interchange is essential to improve safety at the U.S. 60/Highway A intersection, increase intersection capacity, and maintain efficient access to I-44. Profile adjustments on westbound U.S. 60 in Greene County would reduce future flooding risk and major traffic congestion. Following the implementation of these improvements, the interchange and outer road system at Highway Z would increase safety and capacity for U.S. 60. Following these major high-priarity improvements, safety and capacity improvements should be implemented throughout the corridor, including high-friction pavement treatment, acceleration and deceleration lanes, and intersection improvements. Following the safety and capacity improvements on U.S. 60, rail improvements would be feasible.

At the final implementation of all improvements, the transportation network would be better suited to serve the local communities and the region in times of disaster recovery and relief.

Resilient Corridor Improvements Summary					
Ranking	Roadway	Location	Resilient Enhancement	Benefits	Probable Cost 2019 Dollars
PRIORITY \#1	Highway A	Diggins	U.S. 60 Interchange \& Safety Improvements of Regional I-44 Connection	- Increased Capacity - Upgrade of I-44 Incident Relief Route - Removal \& Upgrade of dangerous At-Grade Intersection	\$5,433,332
	U.S. 60 Profile Adjustment	Greene County	Profile Adjustment \& Drainage Improvements to reduce Flooding Risk \& Highway Closures	- Reduced Flooding Risk - Improvements to I-44 Incident Relief Route - Decreased Traffic Congestion in Webster County during periods of high water - Reduction in Vehicle Hydroplaning	\$1,324,609

$\substack{\text { PRIORITY } \\ \# 3}$	Highway Z

- Maintain local connectivity at times of Rail Traffic
- Reduction in Vehicle Hydroplaning \$4,787,980
- Removal \& Upgrade of dangerous At-Grade Intersection

PRIORITY \#4	BNSF Railroad Overpass	Seymour	Implement 7 Gradeseparated Crossings with 14 At-Grade Crossing Closures \& 4 At-grade Crossing Improvements		Maintains connectivity during Rail Traffic Full access for Emergency Responders Maintains access to FEMA Shelter	\$1,796,967

US Highway 60 Corridor Study
 Webster County, MO

Regional Incident Detour Analysis

April 13, 2020

Introduction \& Background

As part of the US 60 Corridor Study, the US Hwy 60 Corridor was identified as a major regional relief route for Interstate 44 (l-44) in the event of a closure due to traffic incidents or natural disasters. With any detour that adds time and mileage to a trip, there is a resulting societal impact. This analysis details the various impacts, and their corresponding economic repercussions. For this section of I-44, there are two (2) main detour routes available that have been historically used, depending on the location of the closure:

Scenario 1

The first routes traffic from Springfield to Marshfield, MO, and vice versa, via routes US 65, US 60, and MO Hwy A, providing a detour around a closure that occurs between Springfield and Marshfield (Mile Marker 82.4 to 101.0).

Scenario 2

The second routes traffic from Springfield to Rolla, MO, and vice versa, via routes US 65, US 60, and US 63, providing a regional detour around a closure that occurs between Marshfield and Rolla
 (Mile Marker 101.0 to 186.6).

Four (4) general societal impacts were evaluated as part of this analysis, as follows:
Travel Time Impact - The economic impact of the added time for traffic detouring for drivers and passengers of general passenger vehicles and commercial vehicles.
Safety Impact - The resulting increased crash risk and associated economic impact due to higher traffic volumes and longer distances that result in reduced capacity and operations.
Vehicle Operating Costs Impact - The economic impact of the increase in mileage traveled by general passenger vehicles and commercial trucks. These costs are defined by the USDOT as fuel, maintenance, insurance, lease \& purchase payments, tires, and depreciation.

Emissions Output Impact - The environmental impact attributed to the additional Carbon Dioxide and other exhaust emissions due to increased travel distance, expressed as the associated economic impact.

Methods \& Assumptions

As described above, the Detour Analysis was analyzed for two possible scenarios. Historically, data has shown that these scenarios occur most commonly on l-44 due to traffic incident closures or natural disasters such as flooding. Flooding in this region most commonly occurs during 500 -year flood events where l-44 crosses the Gasconade River at Hazelgreen and at Jerome, between Lebanon and Rolla.

The two (2) scenarios were developed after better understanding the most common locations of traffic incidents that result in roadway closures, and the associated traffic detour, as produced through Google Maps. Scenario 1 is the common route that Google Maps routes traffic for I-44 detours and Scenario 2 is MoDOT's official Incident Relief Route.

Added travel times and additional mileage for detours were calculated based on the Google Maps recommended detour route compared to the original, most efficient route via l-44. Travel Times are based on free-flow conditions; thus it would be expected that greater travel time delays would occur with higher traffic density.

A regional traffic growth of 2.62\% was applied, in addition to traffic volumes on l-44 and US 60 as determined by the US Highway 60 Corridor Study Master Plan. The 2020 two-directional Average Daily Traffic (ADT) on I-44 and US 60 was estimated at 39,900 and 19,420, respectively.
Additionally, the detour routes MO Hwy A and US 63 have estimated 2020 ADT of 2,590 and 3,469, respectively. All ADT inputs were assumed that all l-44 traffic is detoured, either for a one-directional or two-directional closure.

Crash Prediction models were developed using the Highway Safety Manual (HSM), with the detour corridors assumed to be one (1) segment, and a generalized intersection applied for each intersection along the detour route. Additionally, crash prediction rates were assumed to grow proportionately, and were back calculated using 2020 and 2040 traffic volumes, resulting in a yearly growth rate of 2.19%. For routes that had over the maximum ADT input allowed under detour conditions, a percent difference ratio was applied to each crash type in the HSM models to obtain more accurate crash predictions.

The values of societal impact costs are derived from the USDOT and EPA guidance on Benefit-Cost Analysis and are listed on the Assumptions table of the attached Detour Analysis. ${ }^{1}$

Detour Analysis Results

Scenario 1 Results

The impact of a total roadway closure that reroutes l-44 via US 65 - US 60 - MO Hwy A would add an additional 32 minutes of travel time and 26 miles. The resulting economic impact is approximately $\$ 1,080,724$ per day, or approximately $\$ 45,030$ every hour (2020 dollars). In 20 years (2040), assuming no capacity or safety improvements are made to the transportation system, the resulting impact is estimated to be \$1,738,362 per day, or \$72,432 every hour.

Scenario 2 Results

The impact of a total roadway closure that regionally reroutes I-44 via US 65 - US 60 - US 63 would add an additional 53 minutes of travel time and 39 miles. The resulting economic impact is approximately $\$ 1,716,931$ per day, or approximately $\$ 71,539$ every hour (2020 dollars). In 20 years (2040), assuming no capacity or safety improvements are made, the resulting impact is estimated to be $\$ 3,995,227$ per day, or $\$ 166,468$ every hour.

While these values express the economic toll that an Interstate closure and detour make on travel time, vehicle operating costs, safety, and emissions, these values do not include the value of the freight moved along these corridors. With limited information available on the type, value, and amounts of freight moved along the l-44 corridor regionally, it can be assumed that the economic toll is significantly greater.

[^29]| Scenario 1
 (Via US 65 - US 60 - Hwy A)
 One-Directional Closure

 Current Societal Impact (2020) 20 Year Societal Impact (2040)
 Daily Hourly | | | |
| :---: | :---: | :---: | :---: |
| $\$ 540,781$ | $\$ 22,536$ | Daily | Hourly |
| Two-Directional Closure | | | |
| Current Societal Impact (2020) | 20 Year Societal Impact (2040) | | |
| Daily | Hourly | Daily | Hourly |
| $\$ 1,080,724$ | $\$ 45,030$ | $\$ 1,738,362$ | $\$ 72,432$ |

Scenario 2 (Via US 65 - US 60 - US 63) One-Directional Closure			
Current Societal Impact (2020)			
Daily	Hourly	20 Year Societal Impact (2040)	
$\$ 859,642$	$\$ 35,818$	Daily	Hourly
Two-Directional Closure			
Current Societal Impact (2020)	20 Year Societal Impact (2040)		
Daily	Hourly	Daily	Hourly
$\$ 1,716,931$	$\$ 71,539$	$\$ 3,995,227$	$\$ 166,468$

Historical Impacts \& Analysis

MoDOT has documented and provided the data that resulted in a roadway closure on I-44 due to natural disasters, traffic incidents, or police emergencies from 2017 to 2019.

Traffic Accidents

In the past three (3) years, from 2017-2019, l-44 has had a one-directional closure four (4) times, for a total of 13 hours and no major two-directional closures. The average closure due to a traffic incident was 3.3 hours. Traffic was able to detour via Scenario 1 (US 65 - US 60 - MO Hwy A) one (1) time and via Scenario 2 (US 65 - US 60 - US 63) three (3) times. Based on the economic data developed in this analysis, the combined closures have resulted in an estimated economic toll of \$265,206.

Natural Disasters

Additionally, natural disasters have occurred several times in the past decade, and specifically in the last three (3) years, from 2017-2019, resulting in l-44 being completely shut down for multiple days at a time.

In 2018, a multi-vehicle pileup of over 100 vehicles near Conway, MO occurred during a winter snowstorm on February 4, 2018 and closed the l-44 eastbound lanes for 15 hours. The resulting economic toll is estimated to be $\$ 537,270$.

Flooding at the Gasconade River at Hazelgreen and Jerome resulted in l-44 being shut down for multiple days in both directions, forcing traffic to detour from Springfield to Rolla via US 65 - US 60 - US 63 (Scenario 2). l-44 was shut down in multiple locations from April 30 to May 3, 2017, for a total of 62 hours. The estimated economic toll from this event is estimated to be $\$ 4,435,418$.

Additionally, flooding in 2015 (not included in MoDOT data) resulted in l-44 being shut down at Hazelgreen for approximately 50 hours, resulting in an estimated economic toll of \$3,576,950 due to traffic detouring.

Police Emergencies

In the past (3) years, from 2017-2019, l-44 had two (2) one-directional closures totaling two (2) hours, due to police activity. The average closure was 1.0 hours. Traffic was able to detour via Scenario 2 (US 65 - US 60 - US 63) both times. Based on the economic data developed in this analysis, the combined closures have resulted in an estimated economic toll of \$143,078.

Conclusions

The Regional Traffic Detour Analysis details the negative economic impact that detouring l-44 traffic has on society. These results highlight the vital importance of an efficient transportation network in the essential movement of people and freight, regionally in Missouri and across the nation.

While this analysis accounts for the societal impact of travel time, safety, operating costs, and emissions, it does not account for the impact of idle or delayed freight nor the impact of additional traffic to the adjacent routes and towns along the detour routes Thus, the economic impact values obtained in this analysis are conservative to the actual realized societal impacts of a regional detour.

Furthermore, it is vitally important to maintain these routes to allow for capacity increases and associated safety enhancements. Additionally, it is also vitally important to maintain the dedicated detour routes in preparation of the circumstances that result in a closure to a regional arterial, such as Interstate 44. Such redundancy in transportation networks results could result in safer and more efficient movement of goods and people.

Regional Incident Detour Analysis Analysis Tables \& Data

Detour Analysis Inputs and Assumptions

Description	Value	Source
General Assumptions Discount Rate @ 3\% Discount Rate @ 7\% Grams per Short Ton		
1-44 Eastbound Average Daily Traffic (ADT) Impacted I-44 Westbound Average Daily Traffic (ADT) Impacted Percent Trucks Percent Passenger Vehicles Average Annual Regional Vehicular Count Increase	$\begin{array}{r} 19,950 \\ 19,950 \\ 7 \% \\ 93 \% \\ 2.62 \% \end{array}$	MoDOT \& CMT Traffic Counts, 2019
Average Passengers per Private Vehicle Average Passengers per Truck	$\begin{aligned} & 1.67 \\ & 1.00 \end{aligned}$	USDOT Benefit-Cost Analysis Guidance, January 2020
Crash Assumptions Annual Crash Prediction Fatal Accident Probability Injury Accident Probability Property Damage Only Probability	See Appendix See Appendix See Appendix See Appendix	U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of Crossing Safety and Operation
Value of Travel Time Savings, per hour 2019 dollars Private Vehicle Travel Personal Business All Purposes Commercial Vehicle Operators Truck Drivers Bus Drivers Transit Rail Operators Locomotive Engineers	$\$$ 15.20 $\$$ 27.10 $\$$ 16.60 $\$$ 29.50 $\$$ 31.00 $\$$ 50.20 $\$$ 45.70	USDOT Benefit-Cost Analysis Guidance, January 2020
Value of Vehicle Operating Costs, per mile Light Duty Vehicles Commerical Trucks	$\begin{array}{ll} \$ & 0.41 \\ \$ & 0.96 \end{array}$	USDOT Benefit-Cost Analysis Guidance, January 2020
Value of Injuries Minor Injury Serious Injury Fatality Property Damage Only Probability	$\$$ 150,300 $\$$ 577,700 $\$$ $9,962,900$ $\$$ 10,500	MoDOT
Average Emission Rates (g/mi) Light Duty Gasoline Fueled Vehicles Volatile Organic Compounds (VOC) Carbon Monoxide (CO) Nitrogen Oxide (NOx) Particulate Matter ($\mathrm{PM}_{2.5}$) Heavy Duty Diesel Vehicle Volatile Organic Compounds (VOC) Carbon Monoxide (CO) Nitrogen Oxide (NOx) Particulate Matter ($\mathrm{PM}_{2.5}$)	$\begin{aligned} & 0.350 \\ & 3.941 \\ & 0.289 \\ & 0.012 \\ & \\ & 0.645 \\ & 1.994 \\ & 5.971 \\ & 0.230 \end{aligned}$	EPA, Average U.S. Vehicle Emissions by Vehicle Type, April 2018
Value of Emissions Carbon Monoxide (CO) Volatile Organic Compounds (VOC) Nitrogen Oxide (NOx) Particulate Matter ($\mathrm{PM}_{2.5}$) Sulfur Dioxide $\left(\mathrm{SO}_{2}\right)$	\$/ Short Ton $\$$ 1 $\$$ 2,100 $\$$ 8,600 $\$$ 387,300 $\$$ 50,100	USDOT Benefit-Cost Analysis Guidance, January 2020

Scenario 1-Traffic Detour via US 65-US 60-Hwy A ${ }^{1}$								
32 Min. Added Time					26 Added Miles			
One-Directional Closure								
	Current Societal Impact				20 Year Societal Impact			
	Daily		Hourly		Daily		Hourly	
Travel Time Impact	\$	296,286	\$	12,345	\$	833,666	\$	34,736
Decreased Safety Impact	\$	2,087	\$	87	\$	3,218	\$	134
Operating Cost Impact	\$	232,637	\$	9,693	\$	390,228	\$	16,260
Emissions Output Impact	\$	9,861	\$	411	\$	16,540	\$	689
Total Impact	\$	540,871	\$	22,536	\$	1,243,653	\$	51,819
Two-Directional Closure								
	Current Societal Impact				20 Year Societal Impact			
	Daily		Hourly		Daily		Hourly	
Travel Time Impact	\$	592,573	\$	24,691	\$	1,667,332	\$	69,472
Decreased Safety Impact	\$	3,156	\$	132	\$	4,868	\$	203
Operating Cost Impact	\$	465,274	\$	19,386	\$	33,081	\$	1,378
Emissions Output Impact	\$	19,721	\$	822	\$	33,081	\$	1,378
Total Impact	\$	1,080,724	\$	45,030	\$	1,738,362	\$	72,432

${ }^{1}$ See Tables 1-4

Scenario 2 - Traffic Detour via US 65 - US 60 - US 63^{2}

53 Min. Added Time					39 Added Miles			
One-Directional Closure								
	Current Societal Impact				20 Year Societal Impact			
	Daily		Hourly		Daily		Hourly	
Travel Time Impact	\$	490,724	\$	20,447	\$	1,380,759	\$	57,532
Decreased Safety Impact	\$	5,172	\$	215	\$	8,675	\$	361
Operating Cost Impact	\$	348,955	\$	14,540	\$	585,343	\$	24,389
Emissions Output Impact	\$	14,791	\$	616	\$	24,811	\$	1,034
Total Impact	\$	859,642	\$	35,818	\$	1,999,588	\$	83,316
Two-Directional Closure								
	Current Societal Impact				20 Year Societal Impact			
	Daily		Hourly		Daily		Hourly	
Travel Time Impact	\$	981,448	\$	40,894	\$	2,761,518	\$	115,063
Decreased Safety Impact	\$	7,989	\$	333	\$	13,402	\$	558
Operating Cost Impact	\$	697,911	\$	29,080	\$	1,170,685	\$	48,779
Emissions Output Impact	\$	29,582	\$	1,233	\$	49,621	\$	2,068
Total Impact	\$	1,716,931	\$	71,539	\$	3,995,227	\$	166,468

[^30]
Scenario 1 -

Traffic Detour via US 65 - US 60 - Hwy A

Table 1a. Value of Travel Time Delay - One-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Average Reroute Delay per Vehicle (min)	Total Average Passenger Vehicle Delay (min)	Total AverageTruck Vehicle Delay (min)	Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Total Daily Value of Travel Time Impact	
0	2020	19,950	18,554	1,397	32.0	593,712	44,688	\$	274,315	\$	21,972	\$	296,286
1	2021	20,473	19,040	1,433	32.8	625,230	47,060	\$	288,877	\$	23,138	\$	312,015
2	2022	21,009	19,538	1,471	33.7	658,421	49,559	\$	304,213	\$	24,366	\$	328,579
3	2023	21,560	20,050	1,509	34.6	693,375	52,189	\$	320,362	\$	25,660	\$	346,022
4	2024	22,124	20,576	1,549	35.5	730,183	54,960	\$	337,369	\$	27,022	\$	364,391
5	2025	22,704	21,115	1,589	36.4	768,946	57,878	\$	355,279	\$	28,457	\$	383,735
6	2026	23,299	21,668	1,631	37.4	809,767	60,950	\$	374,139	\$	29,967	\$	404,106
7	2027	23,909	22,236	1,674	38.4	852,754	64,186	\$	394,001	\$	31,558	\$	425,559
8	2028	24,536	22,818	1,718	39.4	898,024	67,593	\$	414,917	\$	33,233	\$	448,150
9	2029	25,179	23,416	1,762	40.4	945,697	71,181	\$	436,944	\$	34,998	\$	471,941
10	2030	25,838	24,030	1,809	41.4	995,901	74,960	\$	460,139	\$	36,855	\$	496,995
11	2031	26,515	24,659	1,856	42.5	1,048,770	78,940	\$	484,566	\$	38,812	\$	523,378
12	2032	27,210	25,305	1,905	43.6	1,104,445	83,130	\$	510,290	\$	40,872	\$	551,163
13	2033	27,923	25,968	1,955	44.8	1,163,076	87,543	\$	537,380	\$	43,042	\$	580,422
14	2034	28,654	26,649	2,006	46.0	1,224,820	92,191	\$	565,907	\$	45,327	\$	611,235
15	2035	29,405	27,347	2,058	47.2	1,289,841	97,085	\$	595,949	\$	47,733	\$	643,683
16	2036	30,176	28,063	2,112	48.4	1,358,314	102,239	\$	627,586	\$	50,267	\$	677,854
17	2037	30,966	28,799	2,168	49.7	1,430,422	107,666	\$	660,903	\$	52,936	\$	713,839
18	2038	31,777	29,553	2,224	51.0	1,506,358	113,382	\$	695,988	\$	55,746	\$	751,734
19	2039	32,610	30,327	2,283	52.3	1,586,325	119,401	\$	732,935	\$	58,705	\$	791,641
20	2040	33,464	31,122	2,343	53.7	1,670,538	125,739	\$	771,844	\$	61,822	\$	833,666

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps. Travel Delays assumed to increase linearly with ADT
${ }^{2}$ Traffic Routing assumed if 50% ADT was rerouted for 24 Hours
${ }^{3}$ Average Reroute Delay per Vehicle assumed to annually increase linearly with ADT

Table 1b. Value of Travel Time Delay - Two-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Average Reroute Delay per Vehicle (min)	Total Average Passenger Vehicle Delay (min)		Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Total Daily Value of Travel Time Impact	
0	2020	39,900	37,107	2,793	32.0	1,187,424	89,376	\$	548,629	\$	43,943	\$	592,573
1	2021	40,945	38,079	2,866	32.8	1,250,460	94,121	\$	577,754	\$	46,276	\$	624,030
2	2022	42,018	39,077	2,941	33.7	1,316,843	99,117	\$	608,425	\$	48,733	\$	657,158
3	2023	43,119	40,101	3,018	34.6	1,386,749	104,379	\$	640,724	\$	51,320	\$	692,044
4	2024	44,249	41,151	3,097	35.5	1,460,367	109,920	\$	674,738	\$	54,044	\$	728,782
5	2025	45,408	42,229	3,179	36.4	1,537,892	115,755	\$	710,558	\$	56,913	\$	767,471
6	2026	46,598	43,336	3,262	37.4	1,619,534	121,900	\$	748,278	\$	59,934	\$	808,213
7	2027	47,819	44,471	3,347	38.4	1,705,509	128,372	\$	788,002	\$	63,116	\$	851,118
8	2028	49,071	45,636	3,435	39.4	1,796,048	135,186	\$	829,834	\$	66,467	\$	896,301
9	2029	50,357	46,832	3,525	40.4	1,891,394	142,363	\$	873,887	\$	69,995	\$	943,882
10	2030	51,676	48,059	3,617	41.4	1,991,801	149,921	\$	920,279	\$	73,711	\$	993,990
11	2031	53,030	49,318	3,712	42.5	2,097,539	157,879	\$	969,133	\$	77,624	\$	1,046,757
12	2032	54,420	50,610	3,809	43.6	2,208,890	166,261	\$	1,020,581	\$	81,745	\$	1,102,326
13	2033	55,846	51,936	3,909	44.8	2,326,152	175,087	\$	1,074,760	\$	86,084	\$	1,160,844
14	2034	57,309	53,297	4,012	46.0	2,449,639	184,381	\$	1,131,815	\$	90,654	\$	1,222,469
15	2035	58,810	54,694	4,117	47.2	2,579,682	194,170	\$	1,191,899	\$	95,467	\$	1,287,366
16	2036	60,351	56,127	4,225	48.4	2,716,628	204,477	\$	1,255,173	\$	100,535	\$	1,355,707
17	2037	61,932	57,597	4,335	49.7	2,860,844	215,332	\$	1,321,805	\$	105,872	\$	1,427,677
18	2038	63,555	59,106	4,449	51.0	3,012,716	226,764	\$	1,391,975	\$	111,492	\$	1,503,467
19	2039	65,220	60,655	4,565	52.3	3,172,650	238,802	\$	1,465,870	\$	117,411	\$	1,583,281
20	2040	66,929	62,244	4,685	53.7	3,341,075	251,479	\$	1,543,688	\$	123,644	\$	1,667,332

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps. Travel Delays assumed to increase linearly with ADT
${ }^{2}$ Traffic Routing assumed if 100% ADT was rerouted for 24 Hours
${ }^{3}$ Average Reroute Delay per Vehicle assumed to annually increase linearly with ADT

Table 2a. Value of Decreased Safety - One-Directional Closure

Year	Calendar Year	Increased Total Crash Probability	Increased Fatal \& Injury Crash Probability	Increased Property Damage Only Crash Probability		Value Time t
0	2020	. 482	. 213	. 255	\$	2,087
1	2021	. 492	. 218	. 261	\$	2,132
2	2022	. 503	. 222	. 266	\$	2,179
3	2023	. 514	. 227	. 272	\$	2,227
4	2024	. 525	. 232	. 278	\$	2,275
5	2025	. 537	. 237	. 284	\$	2,325
6	2026	. 549	. 243	. 291	\$	2,376
7	2027	. 561	. 248	. 297	\$	2,428
8	2028	. 573	. 253	. 303	\$	2,481
9	2029	. 586	. 259	. 310	\$	2,536
10	2030	. 598	. 264	. 317	\$	2,591
11	2031	. 611	. 270	. 324	\$	2,648
12	2032	. 625	. 276	. 331	\$	2,706
13	2033	. 639	. 282	. 338	\$	2,765
14	2034	. 652	. 288	. 346	\$	2,826
15	2035	. 667	. 295	. 353	\$	2,888
16	2036	. 681	. 301	. 361	\$	2,951
17	2037	. 696	. 308	. 369	\$	3,016
18	2038	. 712	. 315	. 377	\$	3,082
19	2039	. 727	. 321	. 385	\$	3,149
20	2040	. 743	. 328	. 393	\$	3,218
${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps.						
${ }^{2}$ Traffic Routing assumed if 50\% ADT was rerouted for 24 Hours						
${ }^{3}$ Crash Prediction Derived from HSM Models with assumed values						

Table 2b. Value of Decreased Safety - Two-Directional Closure

Year	Calendar Year	Increased Total Crash Probability	Increased Fatal \& Injury Crash Probability	Increased Property Damage Only Crash Probability	Total Daily Value of Travel Time Impact	
0	2020	. 657	. 322	. 335	\$	3,156
1	2021	. 671	. 329	. 342	\$	3,225
2	2022	. 686	. 337	. 349	\$	3,296
3	2023	. 701	. 344	. 357	\$	3,368
4	2024	. 716	. 351	. 365	\$	3,442
5	2025	. 732	. 359	. 373	\$	3,517
6	2026	. 748	. 367	. 381	\$	3,594
7	2027	. 764	. 375	. 389	\$	3,673
8	2028	. 781	. 383	. 398	\$	3,754
9	2029	. 798	. 392	. 407	\$	3,836
10	2030	. 816	. 400	. 416	\$	3,920
11	2031	. 834	. 409	. 425	\$	4,006
12	2032	. 852	. 418	. 434	\$	4,093
13	2033	. 870	. 427	. 443	\$	4,183
14	2034	. 890	. 436	. 453	\$	4,275
15	2035	. 909	. 446	. 463	\$	4,368
16	2036	. 929	. 456	. 473	\$	4,464
17	2037	. 949	. 466	. 484	\$	4,562
18	2038	. 970	. 476	. 494	\$	4,662
19	2039	. 991	. 486	. 505	\$	4,764
20	2040	1.013	. 497	. 516	\$	4,868

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps.
${ }^{2}$ Traffic Routing assumed if 50% ADT was rerouted for 24 Hours
${ }^{3}$ Crash Prediction Derived from HSM Models with assumed values

Table 3a. Value of Transportation Operating Cost - One-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Added Reroute Distance per Vehicle (mile)	Total Added Passenger Vehicle Reroute (mile)	Total Added Truck Vehicle Reroute (mile)	Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Total Daily Operations Value of Added Reroute Distance	
0	2020	19,950	18,554	1,397	26	482,391	36,309	\$	197,780	\$	34,857	\$	232,637
1	2021	20,473	19,040	1,433	26	495,030	37,260	\$	202,962	\$	35,770	\$	238,732
2	2022	21,009	19,538	1,471	26	507,999	38,237	\$	208,280	\$	36,707	\$	244,987
3	2023	21,560	20,050	1,509	26	521,309	39,238	\$	213,737	\$	37,669	\$	251,405
4	2024	22,124	20,576	1,549	26	534,967	40,266	\$	219,337	\$	38,656	\$	257,992
5	2025	22,704	21,115	1,589	26	548,983	41,321	\$	225,083	\$	39,668	\$	264,752
6	2026	23,299	21,668	1,631	26	563,367	42,404	\$	230,980	\$	40,708	\$	271,688
7	2027	23,909	22,236	1,674	26	578,127	43,515	\$	237,032	\$	41,774	\$	278,806
8	2028	24,536	22,818	1,718	26	593,274	44,655	\$	243,242	\$	42,869	\$	286,111
9	2029	25,179	23,416	1,762	26	608,818	45,825	\$	249,615	\$	43,992	\$	293,607
10	2030	25,838	24,030	1,809	26	624,769	47,026	\$	256,155	\$	45,145	\$	301,300
11	2031	26,515	24,659	1,856	26	641,138	48,258	\$	262,866	\$	46,327	\$	309,194
12	2032	27,210	25,305	1,905	26	657,936	49,522	\$	269,754	\$	47,541	\$	317,295
13	2033	27,923	25,968	1,955	26	675,173	50,820	\$	276,821	\$	48,787	\$	325,608
14	2034	28,654	26,649	2,006	26	692,863	52,151	\$	284,074	\$	50,065	\$	334,139
15	2035	29,405	27,347	2,058	26	711,016	53,517	\$	291,517	\$	51,377	\$	342,893
16	2036	30,176	28,063	2,112	26	729,645	54,919	\$	299,154	\$	52,723	\$	351,877
17	2037	30,966	28,799	2,168	26	748,761	56,358	\$	306,992	\$	54,104	\$	361,096
18	2038	31,777	29,553	2,224	26	768,379	57,835	\$	315,035	\$	55,522	\$	370,557
19	2039	32,610	30,327	2,283	26	788,510	59,350	\$	323,289	\$	56,976	\$	380,265
20	2040	33,464	31,122	2,343	26	809,169	60,905	\$	331,759	\$	58,469	\$	390,228

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps.
${ }^{2}$ Traffic Routing assumed if 50\% ADT was rerouted for 24 Hours

Table 3b. Value of Transportation Operating Cost - Two-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Added Reroute Distance per Vehicle (mile)	Total Added Passenger Vehicle Reroute (mile)	Total Added Truck Vehicle Reroute (mile)	Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Total Daily Operations Value of Added Reroute Distance	
0	2020	39,900	37,107	2,793	26	964,782	72,618	\$	395,561	\$	69,713	\$	465,274
1	2021	40,945	38,079	2,866	26	990,059	74,521	\$	405,924	\$	71,540	\$	477,464
2	2022	42,018	39,077	2,941	26	1,015,999	76,473	\$	416,560	\$	73,414	\$	489,974
3	2023	43,119	40,101	3,018	26	1,042,618	78,477	\$	427,473	\$	75,338	\$	502,811
4	2024	44,249	41,151	3,097	26	1,069,935	80,533	\$	438,673	\$	77,311	\$	515,985
5	2025	45,408	42,229	3,179	26	1,097,967	82,643	\$	450,166	\$	79,337	\$	529,503
6	2026	46,598	43,336	3,262	26	1,126,734	84,808	\$	461,961	\$	81,416	\$	543,376
7	2027	47,819	44,471	3,347	26	1,156,254	87,030	\$	474,064	\$	83,549	\$	557,613
8	2028	49,071	45,636	3,435	26	1,186,548	89,310	\$	486,485	\$	85,738	\$	572,222
9	2029	50,357	46,832	3,525	26	1,217,635	91,650	\$	499,231	\$	87,984	\$	587,215
10	2030	51,676	48,059	3,617	26	1,249,538	94,051	\$	512,310	\$	90,289	\$	602,600
11	2031	53,030	49,318	3,712	26	1,282,275	96,515	\$	525,733	\$	92,655	\$	618,388
12	2032	54,420	50,610	3,809	26	1,315,871	99,044	\$	539,507	\$	95,082	\$	634,589
13	2033	55,846	51,936	3,909	26	1,350,347	101,639	\$	553,642	\$	97,573	\$	651,216
14	2034	57,309	53,297	4,012	26	1,385,726	104,302	\$	568,148	\$	100,130	\$	668,277
15	2035	58,810	54,694	4,117	26	1,422,032	107,035	\$	583,033	\$	102,753	\$	685,786
16	2036	60,351	56,127	4,225	26	1,459,289	109,839	\$	598,309	\$	105,445	\$	703,754
17	2037	61,932	57,597	4,335	26	1,497,523	112,717	\$	613,984	\$	108,208	\$	722,192
18	2038	63,555	59,106	4,449	26	1,536,758	115,670	\$	630,071	\$	111,043	\$	741,114
19	2039	65,220	60,655	4,565	26	1,577,021	118,700	\$	646,578	\$	113,952	\$	760,531
20	2040	66,929	62,244	4,685	26	1,618,339	121,810	\$	663,519	\$	116,938	\$	780,457

[^31]| Year | Calendar Year | Average Daily Traffic | Estimated
 Passenger
 Vehicles | Estimated
 Trucks | Assumed Added Reroute Distance per Vehicle (mile) | Total Added Passenger Vehicle Reroute (mile) | Total Added
 Truck Vehicle
 Reroute (mile) | Cost of Emissions for Passenger Vehicles | | | | | | | Cost of Emissions for Trucks | | | | | | | | Total Daily Value of Added Emissions | |
| :---: |
| | | | | | | | | CO | | VOC | | No_{x} | | PM 2.5 | CO | | VOC | | | No_{x} | $\mathrm{PM}_{2.5}$ | | | |
| 0 | 2020 | 19,950 | 18,554 | 1,397 | 26 | 482,391 | 36,309 | \$ | 2 | \$ | 391 | \$ | 1,322 | \$ 2,471 | \$ | 54 | \$ | 0 | \$ | 2,055 | \$ | 3,565 | \$ | 9,861 |
| 1 | 2021 | 20,473 | 19,040 | 1,433 | 26 | 495,030 | 37,260 | \$ | 2 | \$ | 401 | \$ | 1,356 | \$ 2,536 | \$ | 56 | \$ | 0 | \$ | 2,109 | \$ | 3,659 | \$ | 10,119 |
| 2 | 2022 | 21,009 | 19,538 | 1,471 | 26 | 507,999 | 38,237 | \$ | 2 | \$ | 412 | \$ | 1,392 | \$ 2,603 | \$ | 57 | \$ | 0 | \$ | 2,164 | \$ | 3,755 | \$ | 10,384 |
| 3 | 2023 | 21,560 | 20,050 | 1,509 | 26 | 521,309 | 39,238 | \$ | 2 | \$ | 422 | \$ | 1,428 | \$ 2,671 | \$ | 59 | \$ | 0 | \$ | 2,221 | \$ | 3,853 | \$ | 10,656 |
| 4 | 2024 | 22,124 | 20,576 | 1,549 | 26 | 534,967 | 40,266 | \$ | 2 | \$ | 433 | \$ | 1,466 | \$ 2,741 | \$ | 60 | \$ | 0 | \$ | 2,279 | \$ | 3,954 | \$ | 10,935 |
| 5 | 2025 | 22,704 | 21,115 | 1,589 | 26 | 548,983 | 41,321 | \$ | 2 | \$ | 445 | \$ | 1,504 | \$ 2,812 | \$ | 62 | \$ | 0 | \$ | 2,339 | \$ | 4,057 | \$ | 11,222 |
| 6 | 2026 | 23,299 | 21,668 | 1,631 | 26 | 563,367 | 42,404 | \$ | 2 | \$ | 456 | \$ | 1,543 | \$ 2,886 | \$ | 63 | \$ | 0 | \$ | 2,400 | \$ | 4,164 | \$ | 11,516 |
| 7 | 2027 | 23,909 | 22,236 | 1,674 | 26 | 578,127 | 43,515 | \$ | 3 | \$ | 468 | \$ | 1,584 | \$ 2,962 | \$ | 65 | \$ | 0 | \$ | 2,463 | \$ | 4,273 | \$ | 11,818 |
| 8 | 2028 | 24,536 | 22,818 | 1,718 | 26 | 593,274 | 44,655 | \$ | 3 | \$ | 481 | \$ | 1,625 | \$ 3,039 | \$ | 67 | \$ | 0 | \$ | 2,528 | \$ | 4,385 | \$ | 12,127 |
| 9 | 2029 | 25,179 | 23,416 | 1,762 | 26 | 608,818 | 45,825 | \$ | 3 | \$ | 493 | \$ | 1,668 | \$ 3,119 | \$ | 68 | \$ | 0 | \$ | 2,594 | \$ | 4,500 | \$ | 12,445 |
| 10 | 2030 | 25,838 | 24,030 | 1,809 | 26 | 624,769 | 47,026 | \$ | 3 | \$ | 506 | \$ | 1,712 | \$ 3,201 | \$ | 70 | \$ | 0 | \$ | 2,662 | \$ | 4,618 | \$ | 12,771 |
| 11 | 2031 | 26,515 | 24,659 | 1,856 | 26 | 641,138 | 48,258 | \$ | 3 | \$ | 519 | \$ | 1,757 | \$ 3,285 | \$ | 72 | \$ | 0 | \$ | 2,732 | \$ | 4,739 | \$ | 13,106 |
| 12 | 2032 | 27,210 | 25,305 | 1,905 | 26 | 657,936 | 49,522 | \$ | 3 | \$ | 533 | \$ | 1,803 | \$ 3,371 | \$ | 74 | \$ | 0 | \$ | 2,803 | \$ | 4,863 | \$ | 13,449 |
| 13 | 2033 | 27,923 | 25,968 | 1,955 | 26 | 675,173 | 50,820 | \$ | 3 | \$ | 547 | \$ | 1,850 | \$ 3,459 | \$ | 76 | \$ | 0 | \$ | 2,877 | \$ | 4,990 | \$ | 13,801 |
| 14 | 2034 | 28,654 | 26,649 | 2,006 | 26 | 692,863 | 52,151 | \$ | 3 | \$ | 561 | \$ | 1,898 | \$ 3,550 | \$ | 78 | \$ | 0 | \$ | 2,952 | \$ | 5,121 | \$ | 14,163 |
| 15 | 2035 | 29,405 | 27,347 | 2,058 | 26 | 711,016 | 53,517 | \$ | 3 | \$ | 576 | \$ | 1,948 | \$ 3,643 | \$ | 80 | \$ | 0 | \$ | 3,029 | \$ | 5,255 | \$ | 14,534 |
| 16 | 2036 | 30,176 | 28,063 | 2,112 | 26 | 729,645 | 54,919 | \$ | 3 | \$ | 591 | \$ | 1,999 | \$ 3,738 | \$ | 82 | \$ | 0 | \$ | 3,109 | \$ | 5,393 | \$ | 14,915 |
| 17 | 2037 | 30,966 | 28,799 | 2,168 | 26 | 748,761 | 56,358 | \$ | 3 | \$ | 607 | \$ | 2,051 | \$ 3,836 | \$ | 84 | \$ | 0 | \$ | 3,190 | \$ | 5,534 | \$ | 15,306 |
| 18 | 2038 | 31,777 | 29,553 | 2,224 | 26 | 768,379 | 57,835 | \$ | 3 | \$ | 623 | \$ | 2,105 | \$ 3,936 | \$ | 86 | \$ | 0 | \$ | 3,274 | \$ | 5,679 | \$ | 15,707 |
| 19 | 2039 | 32,610 | 30,327 | 2,283 | 26 | 788,510 | 59,350 | \$ | 3 | \$ | 639 | \$ | 2,160 | \$ 4,040 | \$ | 89 | \$ | 0 | \$ | 3,359 | \$ | 5,828 | \$ | 16,118 |
| 20 | 2040 | 33,464 | 31,122 | 2,343 | 26 | 809,169 | 60,905 | \$ | 4 | \$ | 656 | \$ | 2,217 | \$ 4,145 | \$ | 91 | \$ | 0 | \$ | 3,447 | \$ | 5,980 | \$ | 16,540 |

1 Traffic Routing Times \& Distances retrieved from Google Maps.
${ }^{2}$ Traffic Routing assumed if 50% ADT was rerouted for 24 Hours

Table 4b. Value of Added Emissions - Two-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Added Reroute Distance per Vehicle (mile)	Total Added Passenger Vehicle Reroute (mile)	Total Added Truck Vehicle Reroute (mile)	Cost of Emissions for Passenger Vehicles							Cost of Emissions for Trucks								Total Daily Value of Added Emissions	
								CO		VOC		$\mathrm{No}_{\text {x }}$		$\mathrm{PM}_{2.5}$	CO		VOC			$\mathrm{No}_{\mathrm{x}} \quad \mathrm{PM}_{2.5}$				
0	2020	39,900	37,107	2,793	26	964,782	72,618	\$	4	\$	782	\$	2,643	\$ 4,943	\$	108	\$	0	\$	4,110	\$	7,131	\$	19,721
1	2021	40,945	38,079	2,866	26	990,059	74,521	\$	4	\$	802	\$	2,712	\$ 5,072	\$	111	\$	0	\$	4,218	\$	7,317	\$	20,238
2	2022	42,018	39,077	2,941	26	1,015,999	76,473	\$	4	\$	823	\$	2,784	\$ 5,205	\$	114	\$	0	\$	4,329	\$	7,509	\$	20,768
3	2023	43,119	40,101	3,018	26	1,042,618	78,477	\$	5	\$	845	\$	2,856	\$ 5,341	\$	117	\$	0	\$	4,442	\$	7,706	\$	21,312
4	2024	44,249	41,151	3,097	26	1,069,935	80,533	\$	5	\$	867	\$	2,931	\$ 5,481	\$	120	\$	0	\$	4,559	\$	7,908	\$	21,871
5	2025	45,408	42,229	3,179	26	1,097,967	82,643	\$	5	\$	890	\$	3,008	\$ 5,625	\$	123	\$	0	\$	4,678	\$	8,115	\$	22,444
6	2026	46,598	43,336	3,262	26	1,126,734	84,808	\$	5	\$	913	\$	3,087	\$ 5,772	\$	127	\$	0	\$	4,800	\$	8,328	\$	23,032
7	2027	47,819	44,471	3,347	26	1,156,254	87,030	\$	5	\$	937	\$	3,168	\$ 5,924	\$	130	\$	0	\$	4,926	\$	8,546	\$	23,635
8	2028	49,071	45,636	3,435	26	1,186,548	89,310	\$	5	\$	961	\$	3,251	\$ 6,079	\$	133	\$	0	\$	5,055	\$	8,770	\$	24,255
9	2029	50,357	46,832	3,525	26	1,217,635	91,650	\$	5	\$	987	\$	3,336	\$ 6,238	\$	137	\$	0	\$	5,188	\$	8,999	\$	24,890
10	2030	51,676	48,059	3,617	26	1,249,538	94,051	\$	5	\$	1,012	\$	3,423	\$ 6,402	\$	140	\$	0	\$	5,324	\$	9,235	\$	25,542
11	2031	53,030	49,318	3,712	26	1,282,275	96,515	\$	6	\$	1,039	\$	3,513	\$ 6,569	\$	144	\$	0	\$	5,463	\$	9,477	\$	26,211
12	2032	54,420	50,610	3,809	26	1,315,871	99,044	\$	6	\$	1,066	\$	3,605	\$ 6,741	\$	148	\$	0	\$	5,606	\$	9,725	\$	26,898
13	2033	55,846	51,936	3,909	26	1,350,347	101,639	\$	6	\$	1,094	\$	3,700	\$ 6,918	\$	152	\$	0	\$	5,753	\$	9,980	\$	27,603
14	2034	57,309	53,297	4,012	26	1,385,726	104,302	\$	6	\$	1,123	\$	3,796	\$ 7,099	\$	156	\$	0	\$	5,904		10,242	\$	28,326
15	2035	58,810	54,694	4,117	26	1,422,032	107,035	\$	6	\$	1,152	\$	3,896	\$ 7,285	\$	160	\$	0	\$	6,059		10,510	\$	29,068
16	2036	60,351	56,127	4,225	26	1,459,289	109,839	\$	6	\$	1,182	\$	3,998	\$ 7,476	\$	164	\$	0	\$	6,217	\$	10,785	\$	29,830
17	2037	61,932	57,597	4,335	26	1,497,523	112,717	\$	7	\$	1,213	\$	4,103	\$ 7,672	\$	168	\$	0	\$	6,380		11,068	\$	30,611
18	2038	63,555	59,106	4,449	26	1,536,758	115,670	\$	7	\$	1,245	\$	4,210	\$ 7,873	\$	173	\$	0	\$	6,547		11,358	\$	31,413
19	2039	65,220	60,655	4,565	26	1,577,021	118,700	\$	7	\$	1,278	\$	4,321	\$ 8,079	\$	177	\$	0	\$	6,719		11,656	\$	32,236
20	2040	66,929	62,244	4,685	26	1,618,339	121,810	\$	7	\$	1,311	\$	4,434	\$ 8,291	\$	182	\$	0	\$	6,895	\$	11,961	\$	33,081

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps.
${ }^{2}$ Traffic Routing assumed if 100% ADT was rerouted for 24 Hours

Scenario 2 -

Traffic Detour via US 65 - US 60 - US 63

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Average Reroute Delay per Vehicle (min)	Total Average Passenger Vehicle Delay (min)	Total AverageTruck Vehicle Delay (min)	Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Total Daily Value of Travel Time Impact	
0	2020	19,950	18,554	1,397	53.0	983,336	74,015	\$	454,334	\$	36,390	\$	490,724
1	2021	20,473	19,040	1,433	54.4	1,035,537	77,944	\$	478,453	\$	38,322	\$	516,775
2	2022	21,009	19,538	1,471	55.8	1,090,510	82,081	\$	503,852	\$	40,357	\$	544,209
3	2023	21,560	20,050	1,509	57.3	1,148,402	86,439	\$	530,600	\$	42,499	\$	573,099
4	2024	22,124	20,576	1,549	58.8	1,209,366	91,028	\$	558,767	\$	44,755	\$	603,523
5	2025	22,704	21,115	1,589	60.3	1,273,567	95,860	\$	588,430	\$	47,131	\$	635,562
6	2026	23,299	21,668	1,631	61.9	1,341,176	100,949	\$	619,668	\$	49,633	\$	669,301
7	2027	23,909	22,236	1,674	63.5	1,412,374	106,308	\$	652,564	\$	52,268	\$	704,832
8	2028	24,536	22,818	1,718	65.2	1,487,352	111,951	\$	687,206	\$	55,043	\$	742,249
9	2029	25,179	23,416	1,762	66.9	1,566,311	117,894	\$	723,688	\$	57,965	\$	781,652
10	2030	25,838	24,030	1,809	68.6	1,649,461	124,153	\$	762,106	\$	61,042	\$	823,148
11	2031	26,515	24,659	1,856	70.4	1,737,025	130,744	\$	802,563	\$	64,282	\$	866,846
12	2032	27,210	25,305	1,905	72.3	1,829,237	137,685	\$	845,168	\$	67,695	\$	912,863
13	2033	27,923	25,968	1,955	74.2	1,926,345	144,994	\$	890,035	\$	71,289	\$	961,324
14	2034	28,654	26,649	2,006	76.1	2,028,607	152,691	\$	937,284	\$	75,073	\$	1,012,357
15	2035	29,405	27,347	2,058	78.1	2,136,299	160,797	\$	987,041	\$	79,058	\$	1,066,100
16	2036	30,176	28,063	2,112	80.2	2,249,707	169,333	\$	1,039,440	\$	83,255	\$	1,122,695
17	2037	30,966	28,799	2,168	82.3	2,369,136	178,322	\$	1,094,620	\$	87,675	\$	1,182,295
18	2038	31,777	29,553	2,224	84.4	2,494,905	187,789	\$	1,152,729	\$	92,329	\$	1,245,059
19	2039	32,610	30,327	2,283	86.6	2,627,351	197,758	\$	1,213,924	\$	97,231	\$	1,311,155
20	2040	33,464	31,122	2,343	88.9	2,766,828	208,256	\$	1,278,367	\$	102,392	\$	1,380,759

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps. Travel Delays assumed to increase linearly with ADT
${ }^{2}$ Traffic Routing assumed if 50% ADT was rerouted for 24 Hours
${ }^{3}$ Average Reroute Delay per Vehicle assumed to annually increase linearly with ADT

Table 5b. Value of Travel Time Delay - Two-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Average Reroute Delay per Vehicle (min)	Total Average Passenger Vehicle Delay (min)	Total AverageTruck Vehicle Delay (min)	Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Total Daily Value of Travel Time Impact	
0	2020	39,900	37,107	2,793	53.0	1,966,671	148,029	\$	908,668	\$	72,781	\$	981,448
1	2021	40,945	38,079	2,866	54.4	2,071,075	155,887	\$	956,905	\$	76,645	\$	1,033,550
2	2022	42,018	39,077	2,941	55.8	2,181,021	164,163	\$	1,007,704	\$	80,713	\$	1,088,418
3	2023	43,119	40,101	3,018	57.3	2,296,803	172,878	\$	1,061,200	\$	84,998	\$	1,146,198
4	2024	44,249	41,151	3,097	58.8	2,418,732	182,055	\$	1,117,535	\$	89,510	\$	1,207,045
5	2025	45,408	42,229	3,179	60.3	2,547,134	191,720	\$	1,176,861	\$	94,262	\$	1,271,123
6	2026	46,598	43,336	3,262	61.9	2,682,352	201,897	\$	1,239,336	\$	99,266	\$	1,338,603
7	2027	47,819	44,471	3,347	63.5	2,824,749	212,616	\$	1,305,128	\$	104,536	\$	1,409,664
8	2028	49,071	45,636	3,435	65.2	2,974,705	223,903	\$	1,374,413	\$	110,085	\$	1,484,498
9	2029	50,357	46,832	3,525	66.9	3,132,621	235,789	\$	1,447,375	\$	115,929	\$	1,563,305
10	2030	51,676	48,059	3,617	68.6	3,298,921	248,306	\$	1,524,211	\$	122,084	\$	1,646,295
11	2031	53,030	49,318	3,712	70.4	3,474,049	261,488	\$	1,605,126	\$	128,565	\$	1,733,691
12	2032	54,420	50,610	3,809	72.3	3,658,474	275,369	\$	1,690,337	\$	135,390	\$	1,825,727
13	2033	55,846	51,936	3,909	74.2	3,852,689	289,987	\$	1,780,071	\$	142,577	\$	1,922,648
14	2034	57,309	53,297	4,012	76.1	4,057,215	305,382	\$	1,874,568	\$	150,146	\$	2,024,715
15	2035	58,810	54,694	4,117	78.1	4,272,598	321,593	\$	1,974,083	\$	158,117	\$	2,132,199
16	2036	60,351	56,127	4,225	80.2	4,499,415	338,666	\$	2,078,880	\$	166,511	\$	2,245,390
17	2037	61,932	57,597	4,335	82.3	4,738,273	356,644	\$	2,189,240	\$	175,350	\$	2,364,590
18	2038	63,555	59,106	4,449	84.4	4,989,811	375,577	\$	2,305,459	\$	184,659	\$	2,490,118
19	2039	65,220	60,655	4,565	86.6	5,254,702	395,515	\$	2,427,848	\$	194,462	\$	2,622,309
20	2040	66,929	62,244	4,685	88.9	5,533,656	416,512	\$	2,556,733	\$	204,785	\$	2,761,518

[^32]Table 6a. Value of Decreased Safety - One-Directional Closure

Year	Calendar Year	Increased Total Crash Probability	Increased Fatal \& Injury Crash Probability	Increased Property Damage Only Crash Probability	Total Daily Value of Travel Time Impact	
0	2020	. 988	. 528	. 462	\$	5,172
1	2021	1.014	. 542	. 474	\$	5,307
2	2022	1.040	. 556	. 487	\$	5,446
3	2023	1.067	. 571	. 499	\$	5,589
4	2024	1.095	. 586	. 512	\$	5,735
5	2025	1.124	. 601	. 526	\$	5,886
6	2026	1.154	. 617	. 540	\$	6,040
7	2027	1.184	. 633	. 554	\$	6,198
8	2028	1.215	. 650	. 568	\$	6,361
9	2029	1.247	. 667	. 583	\$	6,527
10	2030	1.279	. 684	. 598	\$	6,698
11	2031	1.313	. 702	. 614	\$	6,874
12	2032	1.347	. 721	. 630	\$	7,054
13	2033	1.382	. 740	. 647	\$	7,239
14	2034	1.419	. 759	. 664	\$	7,428
15	2035	1.456	. 779	. 681	\$	7,623
16	2036	1.494	. 799	. 699	\$	7,823
17	2037	1.533	. 820	. 717	\$	8,028
18	2038	1.573	. 842	. 736	\$	8,238
19	2039	1.614	. 864	. 755	\$	8,454
20	2040	1.657	. 886	. 775	\$	8,675

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps.
${ }^{2}$ Traffic Routing assumed if 50% ADT was rerouted for 24 Hours
${ }^{3}$ Crash Prediction Derived from HSM Models with assumed values

Table 6b. Value of Decreased Safety - Two-Directional Closure

Year	Calendar Year	Increased Increased				
		Increased Total Crash Probability	Fatal \& Injury Crash Probability	Property Damage Only Crash Probability	Total Daily Value of Travel Time Impact	
0	2020	1.474	. 816	. 660	\$	7,989
1	2021	1.512	. 838	. 678	\$	8,199
2	2022	1.552	. 860	. 695	\$	8,414
3	2023	1.593	. 882	. 713	\$	8,634
4	2024	1.634	. 905	. 732	\$	8,860
5	2025	1.677	. 929	. 751	\$	9,092
6	2026	1.721	. 953	. 771	\$	9,331
7	2027	1.766	. 978	. 791	\$	9,575
8	2028	1.813	1.004	. 812	\$	9,826
9	2029	1.860	1.030	. 833	\$	10,083
10	2030	1.909	1.057	. 855	\$	10,348
11	2031	1.959	1.085	. 877	\$	10,619
12	2032	2.010	1.113	. 900	\$	10,897
13	2033	2.063	1.143	. 924	\$	11,182
14	2034	2.117	1.173	. 948	\$	11,475
15	2035	2.172	1.203	. 973	\$	11,776
16	2036	2.229	1.235	. 999	\$	12,085
17	2037	2.288	1.267	1.025	\$	12,401
18	2038	2.347	1.300	1.052	\$	12,726
19	2039	2.409	1.334	1.079	\$	13,059
20	2040	2.472	1.369	1.107	\$	13,402

${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps.
${ }^{2}$ Traffic Routing assumed if 50\% ADT was rerouted for 24 Hours
${ }^{3}$ Crash Prediction Derived from HSM Models with assumed values

Table 7a. Value of Transportation Operating Cost - One-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Added Reroute Distance per Vehicle (mile)	Total Added Passenger Vehicle Reroute (mile)	Total Added Truck Vehicle Reroute (mile)		Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Daily ons Value d Reroute tance
0	2020	19,950	18,554	1,397	39	723,587	54,464	\$	296,670	\$	52,285	\$	348,955
1	2021	20,473	19,040	1,433	39	742,544	55,890	\$	304,443	\$	53,655	\$	358,098
2	2022	21,009	19,538	1,471	39	761,999	57,355	\$	312,420	\$	55,061	\$	367,480
3	2023	21,560	20,050	1,509	39	781,964	58,857	\$	320,605	\$	56,503	\$	377,108
4	2024	22,124	20,576	1,549	39	802,451	60,400	\$	329,005	\$	57,984	\$	386,988
5	2025	22,704	21,115	1,589	39	823,475	61,982	\$	337,625	\$	59,503	\$	397,128
6	2026	23,299	21,668	1,631	39	845,050	63,606	\$	346,471	\$	61,062	\$	407,532
7	2027	23,909	22,236	1,674	39	867,191	65,272	\$	355,548	\$	62,662	\$	418,210
8	2028	24,536	22,818	1,718	39	889,911	66,983	\$	364,863	\$	64,303	\$	429,167
9	2029	25,179	23,416	1,762	39	913,227	68,737	\$	374,423	\$	65,988	\$	440,411
10	2030	25,838	24,030	1,809	39	937,153	70,538	\$	384,233	\$	67,717	\$	451,950
11	2031	26,515	24,659	1,856	39	961,707	72,387	\$	394,300	\$	69,491	\$	463,791
12	2032	27,210	25,305	1,905	39	986,903	74,283	\$	404,630	\$	71,312	\$	475,942
13	2033	27,923	25,968	1,955	39	1,012,760	76,229	\$	415,232	\$	73,180	\$	488,412
14	2034	28,654	26,649	2,006	39	1,039,294	78,226	\$	426,111	\$	75,097	\$	501,208
15	2035	29,405	27,347	2,058	39	1,066,524	80,276	\$	437,275	\$	77,065	\$	514,340
16	2036	30,176	28,063	2,112	39	1,094,467	82,379	\$	448,731	\$	79,084	\$	527,815
17	2037	30,966	28,799	2,168	39	1,123,142	84,538	\$	460,488	\$	81,156	\$	541,644
18	2038	31,777	29,553	2,224	39	1,152,568	86,752	\$	472,553	\$	83,282	\$	555,835
19	2039	32,610	30,327	2,283	39	1,182,766	89,025	\$	484,934	\$	85,464	\$	570,398
20	2040	33,464	31,122	2,343	39	1,213,754	91,358	\$	497,639	\$	87,704	\$	585,343

Table 7b. Value of Transportation Operating Cost - Two-Directional Closure

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Added Reroute Distance per Vehicle (mile)	Total Added Passenger Vehicle Reroute (mile)	Total Added Truck Vehicle Reroute (mile)	Daily Passenger Vehicle Value of Time Delay		Daily Annual Truck Value of Time Delay		Total Daily Operations Value of Added Reroute Distance	
0	2020	39,900	37,107	2,793	39	1,447,173	108,927	\$	593,341	\$	104,570	\$	697,911
1	2021	40,945	38,079	2,866	39	1,485,089	111,781	\$	608,886	\$	107,310	\$	716,196
2	2022	42,018	39,077	2,941	39	1,523,998	114,710	\$	624,839	\$	110,121	\$	734,960
3	2023	43,119	40,101	3,018	39	1,563,927	117,715	\$	641,210	\$	113,006	\$	754,216
4	2024	44,249	41,151	3,097	39	1,604,902	120,799	\$	658,010	\$	115,967	\$	773,977
5	2025	45,408	42,229	3,179	39	1,646,950	123,964	\$	675,250	\$	119,005	\$	794,255
6	2026	46,598	43,336	3,262	39	1,690,100	127,212	\$	692,941	\$	122,123	\$	815,065
7	2027	47,819	44,471	3,347	39	1,734,381	130,545	\$	711,096	\$	125,323	\$	836,419
8	2028	49,071	45,636	3,435	39	1,779,822	133,965	\$	729,727	\$	128,606	\$	858,333
9	2029	50,357	46,832	3,525	39	1,826,453	137,475	\$	748,846	\$	131,976	\$	880,822
10	2030	51,676	48,059	3,617	39	1,874,306	141,077	\$	768,466	\$	135,434	\$	903,899
11	2031	53,030	49,318	3,712	39	1,923,413	144,773	\$	788,599	\$	138,982	\$	927,581
12	2032	54,420	50,610	3,809	39	1,973,807	148,566	\$	809,261	\$	142,623	\$	951,884
13	2033	55,846	51,936	3,909	39	2,025,520	152,459	\$	830,463	\$	146,360	\$	976,823
14	2034	57,309	53,297	4,012	39	2,078,589	156,453	\$	852,221	\$	150,195	\$	1,002,416
15	2035	58,810	54,694	4,117	39	2,133,048	160,552	\$	874,550	\$	154,130	\$	1,028,680
16	2036	60,351	56,127	4,225	39	2,188,934	164,758	\$	897,463	\$	158,168	\$	1,055,631
17	2037	61,932	57,597	4,335	39	2,246,284	169,075	\$	920,976	\$	162,312	\$	1,083,288
18	2038	63,555	59,106	4,449	39	2,305,136	173,505	\$	945,106	\$	166,565	\$	1,111,671
19	2039	65,220	60,655	4,565	39	2,365,531	178,051	\$	969,868	\$	170,929	\$	1,140,796
20	2040	66,929	62,244	4,685	39	2,427,508	182,716	\$	995,278	\$	175,407	\$	1,170,685

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Added Reroute Distance per Vehicle (mile)	Total Added Passenger Vehicle Reroute (mile)	Total Added Truck Vehicle Reroute (mile)	Cost of Emissions for Passenger Vehicles								Cost of Emissions for Trucks								Total Daily Value of Added Emissions	
								CO		Voc		No_{x}		$\mathrm{PM}_{2.5}$		CO		VOC		No_{x}		$\mathrm{PM}_{2.5}$			
0	2020	19,950	18,554	1,397	39	723,587	54,464	\$	3	\$	586	\$	1,982	\$	3,707	\$	81	\$	0	\$	3,083	\$	5,348	\$	14,791
1	2021	20,473	19,040	1,433	39	742,544	55,890	\$	3	\$	602	\$	2,034	\$	3,804	\$	83	\$	0	\$	3,164	+	5,488	\$	15,179
2	2022	21,009	19,538	1,471	39	761,999	57,355	\$	3	\$	617	\$	2,088	\$	3,904	\$	86	\$	0	\$	3,247	\$	5,632	\$	15,576
3	2023	21,560	20,050	1,509	39	781,964	58,857	\$	3	\$	634	\$	2,142	\$	4,006	\$	88	\$	0	\$	3,332	\$	5,779	\$	15,984
4	2024	22,124	20,576	1,549	39	802,451	60,400	\$	3	\$	650	\$	2,198	\$	4,111	\$	90	\$	0	\$	3,419	\$	5,931	\$	16,403
5	2025	22,704	21,115	1,589	39	823,475	61,982	\$	4	\$	667	\$	2,256	\$	4,219	\$	93	\$	0	\$	3,508	\$	6,086	\$	16,833
6	2026	23,299	21,668	1,631	39	845,050	63,606	\$	4	\$	685	\$	2,315	\$	4,329	\$	95	\$	0	\$	3,600	\$	6,246	\$	17,274
7	2027	23,909	22,236	1,674	39	867,191	65,272	\$	4	\$	703	\$	2,376	\$	4,443	\$	97	\$	0	\$	3,695	\$	6,409	\$	17,726
8	2028	24,536	22,818	1,718	39	889,911	66,983	\$	4	\$	721	\$	2,438	\$	4,559	\$	100	\$	0	\$	3,792	\$	6,577	\$	18,191
9	2029	25,179	23,416	1,762	39	913,227	68,737	\$	4	\$	740	\$	2,502	\$	4,679	\$	103	\$	0	\$	3,891	\$	6,750	\$	18,668
10	2030	25,838	24,030	1,809	39	937,153	70,538	\$	4	\$	759	\$	2,568	\$	4,801	\$	105	\$	0	\$	3,993	\$	6,926	\$	19,157
11	2031	26,515	24,659	1,856	39	961,707	72,387	\$	4	\$	779	\$	2,635	\$	4,927	\$	108	\$	0	\$	4,097	\$	7,108	\$	19,659
12	2032	27,210	25,305	1,905	39	986,903	74,283	\$	4	\$	800	\$	2,704	\$	5,056	\$	111	\$	0	\$	4,205	\$	7,294	\$	20,174
13	2033	27,923	25,968	1,955	39	1,012,760	76,229	\$	4	\$	821	\$	2,775	\$	5,188	\$	114	\$	0	\$	4,315	\$	7,485	\$	20,702
14	2034	28,654	26,649	2,006	39	1,039,294	78,226	\$	5	\$	842	\$	2,847	\$	5,324	\$	117	\$	0	\$	4,428	\$	7,681	\$	21,244
15	2035	29,405	27,347	2,058	39	1,066,524	80,276	\$	5	\$	864	\$	2,922	\$	5,464	\$	120	\$	0	\$	4,544	\$	7,883	\$	21,801
16	2036	30,176	28,063	2,112	39	1,094,467	82,379	\$	5	\$	887	\$	2,998	\$	5,607	\$	123	\$	0	\$	4,663	\$	8,089	\$	22,372
17	2037	30,966	28,799	2,168	39	1,123,142	84,538	\$	5	\$	910	\$	3,077	\$	5,754	\$	126	\$	0	\$	4,785	\$	8,301	\$	22,958
18	2038	31,777	29,553	2,224	39	1,152,568	86,752	\$	5	\$	934	\$	3,158	\$	5,905	\$	130	\$	0	\$	4,911	\$	8,518	\$	23,560
19	2039	32,610	30,327	2,283	39	1,182,766	89,025	\$	5	\$	958	\$	3,240	\$	6,059	\$	133	\$	0	\$	5,039	\$	8,742	\$	24,177
20	2040	33,464	31,122	2,343	39	1,213,754	91,358	\$	5	\$	983	\$	3,325	\$	6,218	\$	136	\$	0	\$	5,171	\$	8,971	\$	24,811

Year	Calendar Year	Average Daily Traffic	Estimated Passenger Vehicles	Estimated Trucks	Assumed Added Reroute Distance per Vehicle (mile)	Total Added Passenger Vehicle Reroute (mile)	Total Added Truck Vehicle Reroute (mile)	Cost of Emissions for Passenger Vehicles							Cost of Emissions for Trucks							Total Daily Value of Added Emissions	
								CO		VOC		$\mathrm{No}_{\text {x }}$		$\mathrm{PM}_{2.5}$	CO		VOC		No_{x}		$\mathrm{PM}_{2.5}$		
0	2020	39,900	37,107	2,793	39	1,447,173	108,927	\$	6	\$	1,172	\$	3,965	\$ 7,414	\$	163	\$	0	\$	6,166	\$ 10,696	\$	29,582
1	2021	40,945	38,079	2,866	39	1,485,089	111,781	\$	6	\$	1,203	\$	4,069	\$ 7,608	\$	167	\$	0	\$	6,327	\$ 10,976	\$	30,357
2	2022	42,018	39,077	2,941	39	1,523,998	114,710	\$	7	\$	1,235	\$	4,175	\$ 7,808	\$	171	\$	0	\$	6,493	\$ 11,264	\$	31,152
3	2023	43,119	40,101	3,018	39	1,563,927	117,715	\$	7	\$	1,267	\$	4,285	\$ 8,012	\$	176	\$	0	\$	6,663	\$ 11,559	\$	31,969
4	2024	44,249	41,151	3,097	39	1,604,902	120,799	\$	7	\$	1,300	\$	4,397	\$ 8,222	\$	180	\$	0	\$	6,838	\$ 11,862	\$	32,806
5	2025	45,408	42,229	3,179	39	1,646,950	123,964	\$	7	\$	1,334	\$	4,512	\$ 8,437	\$	185	\$	0	\$	7,017	\$ 12,172	\$	33,666
6	2026	46,598	43,336	3,262	39	1,690,100	127,212	\$	7	+	1,369	\$	4,630	\$ 8,659	\$	190	\$	0	\$	7,201	\$ 12,491	\$	34,548
7	2027	47,819	44,471	3,347	39	1,734,381	130,545	\$	8		1,405	\$	4,752	\$ 8,885	\$	195	\$	0	\$	7,389	\$ 12,819	\$	35,453
8	2028	49,071	45,636	3,435	39	1,779,822	133,965	\$	8	\$	1,442	\$	4,876	\$ 9,118	\$	200	\$	0	\$	7,583	\$ 13,154	\$	36,382
9	2029	50,357	46,832	3,525	39	1,826,453	137,475	\$	8	\$	1,480	\$	5,004	\$ 9,357	\$	205	\$	0	\$	7,782	\$ 13,499	\$	37,335
10	2030	51,676	48,059	3,617	39	1,874,306	141,077	\$	8	\$	1,519	\$	5,135	\$ 9,602	\$	211	\$	0	\$	7,986	\$ 13,853	\$	38,313
11	2031	53,030	49,318	3,712	39	1,923,413	144,773	\$	8	+	1,558	\$	5,270	\$ 9,854	\$	216	\$	0	\$	8,195	\$ 14,216	\$	39,317
12	2032	54,420	50,610	3,809	39	1,973,807	148,566	\$	9	\$	1,599	\$	5,408	\$ 10,112	\$	222	\$	0	\$	8,409	\$ 14,588	\$	40,347
13	2033	55,846	51,936	3,909	39	2,025,520	152,459	\$	9	\$	1,641	\$	5,549	\$ 10,377	\$	228	\$	0	\$	8,630	\$ 14,970	\$	41,404
14	2034	57,309	53,297	4,012	39	2,078,589	156,453	\$	9	\$	1,684	\$	5,695	\$ 10,649	\$	234	\$	0	\$	8,856	\$ 15,363	\$	42,489
15	2035	58,810	54,694	4,117	39	2,133,048	160,552	\$	9	\$	1,728	\$	5,844	\$ 10,928	\$	240	\$	0	\$	9,088	\$ 15,765	\$	43,602
16	2036	60,351	56,127	4,225	39	2,188,934	164,758	\$	10	\$	1,773	\$	5,997	\$ 11,214	\$	246	\$	0	\$	9,326	\$ 16,178	\$	44,745
17	2037	61,932	57,597	4,335	39	2,246,284	169,075	\$	10	\$	1,820	\$	6,154	\$ 11,508	\$	252	\$	0	\$	9,570	\$ 16,602	\$	45,917
18	2038	63,555	59,106	4,449	39	2,305,136	173,505	\$	10	\$	1,868	\$	6,315	\$ 11,809	\$	259	\$	0	\$	9,821	\$ 17,037	\$	47,120
19	2039	65,220	60,655	4,565	39	2,365,531	178,051	\$	10	\$	1,917	\$	6,481	\$ 12,119	\$	266	\$	0		10,078	\$ 17,483	\$	48,354
20	2040	66,929	62,244	4,685	39	2,427,508	182,716	\$	11	\$	1,967	\$	6,651	\$ 12,436	\$	273	\$	0		10,342	\$ 17,941	\$	49,621

Appendix 1

Appendix Table 1. Regional Traffic Detour Loadings (ADT)

One-Directional Closure					
	I-44	US 65	US 60	Hwy A	US 63
Base Condition	39,900	68,293	19,420	2,590	3,469
Detour Condition	19,950	88,243	39,370	22,540	23,419
Two-Directional Closure					
Base Condition	39,900	68,293	19,420	2,590	3,469
Detour Condition	0	108,193	53,320	42,490	43,369

Appendix Table 2. Traffic Safety Analysis - Detour via US 65-US 60-Hwy A

Appendix Table 3. Traffic Safety Analysis - Detour via US 65-US 60-US 63

One-Directional Closure									
	Base Condition (crashes/yr)			Detoured Condition (crashes/yr)			Increased Safety Risk (crashes/yr)		
	Total	Fatal \& Injury	Property Damage Only	Total	Fatal \& Injury	Property Damage Only	Total	Fatal \& Injury	Property Damage Only
1-44	941.5	260.2	681.3	399.8	111.2	288.6	-541.7	-149	-392.7
US 65	142.4	38.7	103.8	146.672	39.861	106.914	4.272	1.161	3.114
US 60	354.632	171.91	182.726	712.089	333.13	378.959	357.457	161.224	196.233
US 63	104.845	34.893	68.952	645.329	214.356	430.973	540.484	179.463	362.021
Total Increased Crash Prediction (crashes/yr)							360.513	192.848	168.668
Two-Directional Closure									
	Base Condition (crashes/yr)			Detoured Condition (crashes/yr)			Increased Safety Risk (crashes/yr)		
	Total	Fatal \& Injury	Property Damage Only	Total	Fatal \& Injury	Property Damage Only	Total	Fatal \& Injury	Property Damage Only
I-44	941.5	260.2	681.3	0	0	0	-941.5	-260.2	-681.3
US 65	142.4	38.7	103.8	183.411	49.8456	133.6944	41.0112	11.1456	29.8944
US 60	354.632	171.91	182.726	961.7	442.586	519.114	607.068	270.68	336.388
US 63	104.845	34.893	68.952	936.189	311.24	624.949	831.344	276.347	555.997
Total Increased Crash Prediction (crashes/yr)							537.9232	297.9726	240.9794

Appendix 2

(1)	(2)		(3)	(4)	Proportion of Total Crashes	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients		Overdispersion			Adjusted	Combined	Calibration Factor, Cr	Predicted
			Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {bmv }}$		$\mathrm{N}_{\text {brmv }}$	CMFs		$\mathrm{N}_{\text {brmv }}$
	from Table 12-3		from Table 12-3	from Equation 12-10		(4)total ${ }^{*}$ (5)	(6) from Worksheet 1 B		$(6)^{*}(7)^{*}(8)$
Total	-12.34	1.36	1.32	150.274	1.000	150.274	1.00	1.00	150.274
Fatal and Injury (FI)	-12.76	1.28	1.31	42.306	$\frac{(4)_{\mathrm{F} 1} /\left((4)_{\mathrm{F} 1}+(4)_{\mathrm{PDO}}\right)}{0.267}$	40.137	1.00	1.00	40.137
Property Damage Only (PDO)	-12.81	1.38	1.34	116.087	$\frac{(5)_{\text {TOTAL }}-(5)_{\mathrm{FI}}}{0.733}$	110.136	1.00	1.00	110.136

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(f)	Predicted $\mathbf{N}_{\text {brmv (FI) }}$ (crashes/year)	Proportion of Collision Type (PDO)	$\begin{aligned} & \text { Predicted } \mathbf{N}_{\text {brmv (PDO) }} \\ & \text { (crashes/year) } \end{aligned}$	Predicted $\mathrm{N}_{\text {brmv (total) }}$ (crashes/year)
	from Table 12-4	(9)Ff from Worksheet 1 C	from Table 12-4	(9)poo from Worksheet 1 C	(9)total from Worksheet 1C
Total	1.000	40.137	1.000	110.136	150.274
		(2)** ${ }_{\text {F }}$ F		(4)**(5) ${ }_{\text {poo }}$	(3)+(5)
Rear-end collision	0.832	33.394	0.662	72.910	106.304
Head-on collision	0.020	0.803	0.007	0.771	1.574
Angle collision	0.040	1.605	0.036	3.965	5.570
Sideswipe, same direction	0.050	2.007	0.223	24.560	26.567
Sideswipe, opposite direction	0.010	0.401	0.001	0.110	0.512
Other multiple-vehicle collision	0.048	1.927	0.071	7.820	9.746

(1)			(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients		Overdispersion		Proportion of TotalCrashes Crashes	Adjusted	Combined	Calibration Factor, Cr	Predicted
			Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$		$\mathrm{N}_{\text {brsv }}$			$\mathrm{N}_{\text {brsv }}$
	from Table 12-5		from Table 12-5	from Equation 12-13		(4) Total * (5)	(6) from Worksheet 1B		$(6)^{*}(7)^{*}(8)$
Total	-5.05	0.47	0.86	17.702	1.000	17.702	1.00	1.00	17.702
Fatal and Injury (FI)	-8.71	0.66	0.28	3.410	$\left.(4)_{F /} /(4)_{F_{1}+}+(4)_{\text {Poo }}\right)$	3.376	1.00	1.00	3.376
					0.191				
Property Damage Only (PDO)	-5.04	0.45	1.06	14.466	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.809}$	14.326	1.00	1.00	14.326

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(fI)	Predicted $\mathbf{N}_{\text {brsv (FI) }}$ (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathrm{N}_{\text {bisv (total) }}$ (crashes/year)
	from Table 12-6	(9)ff from Worksheet 1E	from Table 12-6	(9)poo from Worksheet	(9)Total from Worksheet 1E
Total	1.000	3.376	1.000	14.326	17.702
		(2)** 3 F ${ }_{\text {F1 }}$		(4)**5) ${ }_{\text {poo }}$	(3)+(5)
Collision with animal	0.001	0.003	0.063	0.903	0.906
Collision with fixed object	0.500	1.688	0.813	11.647	13.335
Collision with other object	0.028	0.095	0.016	0.229	0.324
Other single-vehicle collision	0.471	1.590	0.108	1.547	3.137

(1)	(2)	(3)	(4)	(5)	(6)
	Number of driveways,	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, \mathbf{k}
Driveway Type		from Table 12-7	from Table 12-7	$\frac{\text { Equation } 12-16}{n_{j}{ }^{*} N_{j}{ }^{*}(\text { AADT } / 15,000)^{1}}$	from Table 12-7
Major commercial	0	0.033	1.106	0.000	
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	--
Major residential	0	0.018	1.106	0.000	
Minor residential	0	0.003	1.106	0.000	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.000	1.39

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Initial $\mathrm{N}_{\text {brdwy }}$	$\begin{aligned} & \text { Proportion of total } \\ & \text { crashes }\left(\mathrm{f}_{\mathrm{dwy}}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {brdwy }} \\ \hline \end{gathered}$	Combined CMFs	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {brdwy }}$
	$\overline{(5)_{\text {TOTAL }}}$ from Worksheet 1 G	from Table 12-7	(2) TOTAL * * (3)	(6) from Worksheet 1B		$(4)^{\star}(5)^{*}(6)$
Total	0.000	1.000	0.000	1.00	1.00	0.000
Fatal and injury (FI)	--	0.284	0.000	1.00	1.00	0.000
Property damage only (PDO)	--	0.716	0.000	1.00	1.00	0.000

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	dicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	dicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{N}_{\text {br }}$	f_{p}		Predicted $\mathrm{N}_{\text {pedr }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	$\begin{gathered} \text { from Table } \\ 12-8 \end{gathered}$	factor, C_{r}	$(5)^{*}(6)^{*}(7)$
Total	150.274	17.702	0.000	167.976	0.019	1.00	3.192
Fatal and injury (FI)	--	--	--	--	--	1.00	3.192

Worksheet 1J -- Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{Nbr}_{\text {br }}$	$\mathrm{f}_{\text {biker }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2) $+(3)+(4)$	$\begin{gathered} \hline \text { from Table } \\ 12-9 \\ \hline \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	150.274	17.702	0.000	167.976	0.005	1.00	0.840
Fatal and injury (FI)	--	--	--	--	--	1.00	0.840

(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1H; and (8) from Worksheet 1I and 1J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	33.394	72.910	106.304
Head-on collisions (from Worksheet 1D)	0.803	0.771	1.574
Angle collisions (from Worksheet 1D)	1.605	3.965	5.570
Sideswipe, same direction (from Worksheet 1D)	2.007	24.560	26.567
Sideswipe, opposite direction (from Worksheet 1D)	0.401	0.110	0.512
Driveway-related collisions (from Worksheet 1H)	0.000	0.000	0.000
Other multiple-vehicle collision (from Worksheet 1D)	1.927	7.820	9.746
Subtotal	40.137	110.136	150.274
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.003	0.903	0.906
Collision with fixed object (from Worksheet 1F)	1.688	11.647	13.335
Collision with other object (from Worksheet 1F)	0.095	0.229	0.324
Other single-vehicle collision (from Worksheet 1F)	1.590	1.547	3.137
Collision with pedestrian (from Worksheet 11)	3.192	0.000	3.192
Collision with bicycle (from Worksheet 1J)	0.840	0.000	0.840
Subtotal	7.408	14.326	21.733
Total	47.545	124.462	172.007

(1)	(2)	(3)	(4)
Crash Severity Level	Predicted average crash frequency, $\mathbf{N}_{\text {predicted is }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1K		(2)/(3)
Total	172.0	19.00	9.1
Fatal and injury (FI)	47.5	19.00	2.5
Property damage only (PDO)	124.5	19.00	6.6

	(2)		(3) 3) Overdispersion Parameter, \mathbf{k} from Table 12-3	(4)Initial $\mathrm{N}_{\text {bmv }}$from Equation 12-10	(5)	(6) Adjusted $\mathbf{N}_{\text {brmv }}$ $(4)_{\text {Total }}{ }^{*}(5)$	(7) Combined CMFs (6) from Worksheet 1B	Calibration Factor, Cr	
Crash Severity Level	SPF Coefficients from Table 12-3				Proportion of Total Crashes				
Total	-12.34	1.36	1.32	58.544	1.000	58.544	1.00	1.00	58.544
Fatal and Injury (FI)	-12.76	1.28	1.31	17.421	$\frac{(4)_{F /} /\left((4)_{F+}+(4)_{\mathrm{PDO}}\right)}{0.281}$	16.444	1.00	1.00	16.444
Property Damage Only (PDO)	-12.81	1.38	1.34	44.603	$\begin{gathered} (5)_{\text {TOTAL }}-(5)_{\text {FII }} \\ 0.719 \end{gathered}$	42.100	1.00	1.00	42.100

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(f)	Predicted $\mathbf{N}_{\text {brmv (FI) }}$ (crashes/year)	Proportion of Collision Type (PDO)	$\begin{aligned} & \text { Predicted } \mathbf{N}_{\text {brmv (PDO) }} \\ & \text { (crashes/year) } \end{aligned}$	Predicted $\mathrm{N}_{\text {brmv (total) }}$ (crashes/year)
	from Table 12-4	(9)FIf from Worksheet 1 C	from Table 12-4	(9)poo from Worksheet	(9)total from Worksheet 1 C
Total	1.000	16.444	1.000	42.100	58.544
		(2)** ${ }_{\text {F }}$ F।		(4)*(5) ${ }_{\text {Poo }}$	(3)+(5)
Rear-end collision	0.832	13.681	0.662	27.870	41.552
Head-on collision	0.020	0.329	0.007	0.295	0.624
Angle collision	0.040	0.658	0.036	1.516	2.173
Sideswipe, same direction	0.050	0.822	0.223	9.388	10.211
Sideswipe, opposite direction	0.010	0.164	0.001	0.042	0.207
Other multiple-vehicle collision	0.048	0.789	0.071	2.989	3.778

		Worksheet 1E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Roadway Segments							
	SPF Coefficients				Proportion of Total Crashes	Adjusted		Calibration Factor, Cr	Predicted
Crash Severity Level			Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$		${ }^{\text {N }}$	Combines CMFs		$\mathrm{N}_{\text {brsv }}$
Crash Severity Level	from Table 12-5		from Table 12-5	from Equation 12-13		(4) ${ }_{\text {total }}{ }^{*}$ (5)	(6) from Worksheet 1B		${ }_{(6))^{*}(7)^{*}(8)}^{\text {drem }}$
Total	-5.05	0.47	0.86	12.780	1.000	12.780	1.00	1.00	12.780
Fatal and Injury (FI)	-8.71	0.66	0.28	2.158	$\left.(4)_{F=1} /(4)_{F_{1}+}+(4)_{P D o}\right)$	2.163	1.00	1.00	2.163
Property Damage Only (PDO)	-5.04	0.45	1.06	10.590	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.831}$	10.617	1.00	1.00	10.617

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(fI)	Predicted $\mathbf{N}_{\text {brsv (FI) }}$ (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathrm{N}_{\text {bisv (total) }}$ (crashes/year)
	from Table 12-6	(9)ff from Worksheet 1E	from Table 12-6	(9)poo from Worksheet	(9)Total from Worksheet 1E
Total	1.000	2.163	1.000	10.617	12.780
		(2)*(3) ${ }_{\text {F1 }}$		(4)**(5) ${ }_{\text {PDo }}$	(3)+(5)
Collision with animal	0.001	0.002	0.063	0.669	0.671
Collision with fixed object	0.500	1.082	0.813	8.632	9.713
Collision with other object	0.028	0.061	0.016	0.170	0.230
Other single-vehicle collision	0.471	1.019	0.108	1.147	2.166

(1)	(2)	(3)	(4)	(5)	(6)
	Number of driveways,	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, \mathbf{k}
Driveway Type		from Table 12-7	from Table 12-7	$\frac{\text { Equation } 12-16}{n_{j}{ }^{*} N_{j}{ }^{*}(\text { AADT } / 15,000)^{1}}$	from Table 12-7
Major commercial	0	0.033	1.106	0.000	
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	--
Major residential	0	0.018	1.106	0.000	
Minor residential	0	0.003	1.106	0.000	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.000	1.39

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Initial $\mathrm{N}_{\text {brdwy }}$	$\begin{aligned} & \text { Proportion of total } \\ & \text { crashes }\left(\mathrm{f}_{\mathrm{dwy}}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {brdwy }} \\ \hline \end{gathered}$	Combined CMFs	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {brdwy }}$
	$\overline{(5)_{\text {TOTAL }}}$ from Worksheet 1 G	from Table 12-7	(2) TOTAL * * (3)	(6) from Worksheet 1B		$(4)^{\star}(5)^{*}(6)$
Total	0.000	1.000	0.000	1.00	1.00	0.000
Fatal and injury (FI)	--	0.284	0.000	1.00	1.00	0.000
Property damage only (PDO)	--	0.716	0.000	1.00	1.00	0.000

	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {pedr }}$		Predicted $\mathrm{N}_{\text {pedr }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3) $+(4)$	$\begin{gathered} \text { from Table } \\ 12-8 \end{gathered}$	factor, C_{r}	$(5)^{*}(6)^{*}(7)$
Total	58.544	12.780	0.000	71.324	0.019	1.00	1.355
Fatal and injury (FI)	--	--	--	--	--	1.00	1.355

Worksheet 1J -- Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{Nbr}_{\text {br }}$	$\mathrm{f}_{\text {biker }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2) $+(3)+(4)$	$\begin{gathered} \hline \text { from Table } \\ 12-9 \\ \hline \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	58.544	12.780	0.000	71.324	0.005	1.00	0.357
Fatal and injury (FI)	--	--	--	--	--	1.00	0.357

(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	13.681	27.870	41.552
Head-on collisions (from Worksheet 1D)	0.329	0.295	0.624
Angle collisions (from Worksheet 1D)	0.658	1.516	2.173
Sideswipe, same direction (from Worksheet 1D)	0.822	9.388	10.211
Sideswipe, opposite direction (from Worksheet 1D)	0.164	0.042	0.207
Driveway-related collisions (from Worksheet 1H)	0.000	0.000	0.000
Other multiple-vehicle collision (from Worksheet 1D)	0.789	2.989	3.778
Subtotal	16.444	42.100	58.544
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.002	0.669	0.671
Collision with fixed object (from Worksheet 1F)	1.082	8.632	9.713
Collision with other object (from Worksheet 1F)	0.061	0.170	0.230
Other single-vehicle collision (from Worksheet 1F)	1.019	1.147	2.166
Collision with pedestrian (from Worksheet 11)	1.355	0.000	1.355
Collision with bicycle (from Worksheet 1J)	0.357	0.000	0.357
Subtotal	3.875	10.617	14.492
Total	20.319	52.717	73.036

(1)	(2)	(3)	(4)
Crash Severity Level	Predicted average crash frequency, $\mathbf{N}_{\text {predicted is }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1K		(2)/(3)
Total	73.0	19.00	3.8
Fatal and injury (FI)	20.3	19.00	1.1
Property damage only (PDO)	52.7	19.00	2.8

(1)	(2)		(3)	(4)	(5)	(6)	(7)	CalibrationFactor, Cr	(9)
Crash Severity Level	SPF Coefficients		OverdispersionParameter, \mathbf{k}	Initial $\mathrm{N}_{\text {bmv }}$	Proportion of Total Crashes	$\begin{gathered} \text { Adjusted } \\ \mathbf{N}_{\text {brmv }} \end{gathered}$	Combined CMFs		Predicted
	from Table 12-3						(6) from		
	a	b				(4)ィ¢	Worksheet 1B		(6)(7)(8)
Total	-12.34	1.36	1.32	129.372	1.000	129.372	1.00	1.00	129.372
Fatal and Injury (FI)	-12.76	1.28	1.31	34.984	$\frac{(4)_{F} /\left((4)_{\mathrm{F}}+(4)_{\mathrm{PDO}}\right)}{0.257}$	33.295	1.00	1.00	33.295
Property Damage Only (PDO)	-12.81	1.38	1.34	100.951	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.743}$	96.077	1.00	1.00	96.077

$\frac{(1)}{\text { Collision Type }}$	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Type(FI)	Predicted \mathbf{N} brmv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brmv (PDO) (crashes/year)	Predicted $\mathbf{N}_{\text {brmv (total) }}$ (crashes/year)
	from Table 12-4	(9)FIf from Worksheet 1C	from Table 12-4	(9)poo from Worksheet 1C	(9)total from Worksheet 1C
Total	1.000	33.295	1.000	96.077	129.372
		(2)* 3$)_{\text {FI }}$		(4)*(5) ${ }_{\text {PDO }}$	(3)+(5)
Rear-end collision	0.832	27.701	0.662	63.603	91.304
Head-on collision	0.020	0.666	0.007	0.673	1.338
Angle collision	0.040	1.332	0.036	3.459	4.791
Sideswipe, same direction	0.050	1.665	0.223	21.425	23.090
Sideswipe, opposite direction	0.010	0.333	0.001	0.096	0.429
Other multiple-vehicle collision	0.048	1.598	0.071	6.821	8.420

Worksheet 1E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Roadway Segments									
(1)			(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$	Proportion of Total Crashes	Adjusted $\mathrm{N}_{\text {brsv }}$	Combined CMFs	Calibration Factor, Cr	Predicted $\mathrm{N}_{\text {brsv }}$
Crash Severity Level	from Table 12-5		from Table 12-5	from Equation 12-13		(4) Total ${ }^{*}$ (5)	(6) from Worksheet 1B		$(6)^{*}(7)^{*}(8)$
Total	-5.05	0.47	0.86	9.738	1.000	9.738	1.00	1.00	9.738
Fatal and Injury (FI)	-8.71	0.66	0.28	2.064	$\frac{(4)_{\mathrm{F}} /\left((4)_{\mathrm{F}}+(4)_{\mathrm{PDO}}\right)}{0.208}$	2.021	1.00	1.00	2.021
Property Damage Only (PDO)	-5.04	0.45	1.06	7.878	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.792}$	7.716	1.00	1.00	7.716

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(FI)	Predicted \mathbf{N} brsv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathbf{N}_{\text {brsv (TOTAL) }}$ (crashes/year)
	from Table 12-6	(9)FI from Worksheet 1E	from Table 12-6	(9)poo from Worksheet 1E	(9)total from Worksheet 1E
Total	1.000	2.021	1.000	7.716	9.738
		(2)* $\left.{ }^{*}\right)_{\text {Fl }}$		(4)* $\left.{ }^{*}\right)_{\text {PDO }}$	(3)+(5)
Collision with animal	0.001	0.002	0.063	0.486	0.488
Collision with fixed object	0.500	1.011	0.813	6.273	7.284
Collision with other object	0.028	0.057	0.016	0.123	0.180
Other single-vehicle collision	0.471	0.952	0.108	0.833	1.785

(1)	(2)	(3)	(4)	(5)	(6)
Driveway Type	Number of driveways, n_{j}	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, \mathbf{k}
		from Table 12-7	from Table 12-7	$\frac{\text { Equation 12-16 }}{n_{j}{ }^{*} N_{i}{ }^{*}(\text { AADT } / 15,000)^{1}}$	from Table 12-7
Major commercial	0	0.033	1.106	0.000	--
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	
Major residential	0	0.018	1.106	0.000	
Minor residential	0	0.003	1.106	0.000	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.000	1.39

(1)	(2)	(3)	(4)	(5)	(6)	
Crash Severity Level					Calibration factor, C_{r}	
	Initial $\mathrm{N}_{\text {brdwy }}$	$\text { crashes (} \mathrm{f}_{\mathrm{dwy}} \text {) }$	$\mathbf{N}_{\text {brdwy }}$	Combined CMFs		Predicted $\mathrm{N}_{\text {brdwy }}$
	(5) TOTAL from Worksheet 1G	from Table 12-7	(2) TOTAL ${ }^{\text {* }}$ (3)	(6) from Worksheet 1B		$(4)^{*}(5)^{*}(6)$
Total	0.000	1.000	0.000	1.00	1.00	0.000
Fatal and injury (FI)	--	0.284	0.000	1.00	1.00	0.000
Property damage only (PDO)	--	0.716	0.000	1.00	1.00	0.000

Worksheet 11-- Vehicle-Pedestrian Collisions for Urban and Suburban Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {pedr }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {pedr }}$
	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3) $+(4)$	$\begin{gathered} \hline \text { from Table } \\ 12-8 \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	129.372	9.738	0.000	139.109	0.019	1.00	2.643
Fatal and injury (FI)	--	--	--	--	--	1.00	2.643

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {biker }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3) $+(4)$	$\begin{gathered} \text { from Table } \\ 12-9 \\ \hline \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	129.372	9.738	0.000	139.109	0.005	1.00	0.696
Fatal and injury (FI)	--	--	--	--	--	1.00	0.696

Worksheet 1K -- Crash Severity Distribution for Urban and Suburban Roadway Segments			
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 11 and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1 H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	27.701	63.603	91.304
Head-on collisions (from Worksheet 1D)	0.666	0.673	1.338
Angle collisions (from Worksheet 1D)	1.332	3.459	4.791
Sideswipe, same direction (from Worksheet 1D)	1.665	21.425	23.090
Sideswipe, opposite direction (from Worksheet 1D)	0.333	0.096	0.429
Driveway-related collisions (from Worksheet 1H)	0.000	0.000	0.000
Other multiple-vehicle collision (from Worksheet 1D)	1.598	6.821	8.420
Subtotal	33.295	96.077	129.372
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.002	0.486	0.488
Collision with fixed object (from Worksheet 1F)	1.011	6.273	7.284
Collision with other object (from Worksheet 1F)	0.057	0.123	0.180
Other single-vehicle collision (from Worksheet 1F)	0.952	0.833	1.785
Collision with pedestrian (from Worksheet 11)	2.643	0.000	2.643
Collision with bicycle (from Worksheet 1J)	0.696	0.000	0.696
Subtotal	5.360	7.716	13.076
Total	38.655	103.793	142.448

Crash Severity Level	Predicted average crash frequency, $\mathbf{N}_{\text {predicted rs }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1K		(2)/(3)
Total	142.4	8.25	17.3
Fatal and injury (FI)	38.7	8.25	4.7
Property damage only (PDO)	103.8	8.25	12.6

Crash Severity Level	(2)		(3) 3) Overdispersion Parameter, \mathbf{k} from Table 12-3	(4)Initial $\mathrm{N}_{\text {bmv }}$from Equation 12-10	(5)	(6) Adjusted $\mathbf{N}_{\text {brmv }}$ $(4)_{\text {Total }}{ }^{*}(5)$	(7) Combined CMFs (6) from Worksheet 1B		
	SPF Coefficients from Table 12-3				Proportion of Total Crashes				
Total	-12.34	1.36	1.32	129.372	1.000	129.372	1.00	1.00	129.372
Fatal and Injury (FI)	-12.76	1.28	1.31	34.984	$\frac{(4)_{\mathrm{Fl}} /\left((4)_{\mathrm{F}+}+(4)_{\mathrm{PDO}}\right)}{0.257}$	33.295	1.00	1.00	33.295
Property Damage Only (PDO)	-12.81	1.38	1.34	100.951	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.743}$	96.077	1.00	1.00	96.077

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(f)	Predicted $\mathbf{N}_{\text {brmv (FI) }}$ (crashes/year)	Proportion of Collision Type (PDO)	$\begin{aligned} & \text { Predicted } \mathbf{N}_{\text {brmv (PDO) }} \\ & \text { (crashes/year) } \end{aligned}$	Predicted $\mathrm{N}_{\text {brmv (total) }}$ (crashes/year)
	from Table 12-4	(9)Ff from Worksheet 1 C	from Table 12-4	(9)poo from Worksheet 1 C	(9)total from Worksheet 1C
Total	1.000	33.295	1.000	96.077	129.372
		(2)** $)_{\text {F1 }}$		(4)**(5) ${ }_{\text {poo }}$	(3)+(5)
Rear-end collision	0.832	27.701	0.662	63.603	91.304
Head-on collision	0.020	0.666	0.007	0.673	1.338
Angle collision	0.040	1.332	0.036	3.459	4.791
Sideswipe, same direction	0.050	1.665	0.223	21.425	23.090
Sideswipe, opposite direction	0.010	0.333	0.001	0.096	0.429
Other multiple-vehicle collision	0.048	1.598	0.071	6.821	8.420

(1)			(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients		Overdispersion		Proportion of TotalCrashes Crashes	Adjusted	Combined	Calibration Factor, $\mathbf{C r}$	Predicted
			Parameter, \mathbf{k}			$\mathrm{N}_{\text {brsv }}$			$\mathrm{N}_{\text {brsv }}$
	from Table 12-5		from Table 12-5	from Equation 12-13		(4) ${ }_{\text {total }}{ }^{*}$ (5)	(6) from Worksheet 1B		(6)**(7)* (8)
Total	-5.05	0.47	0.86	9.738	1.000	9.738	1.00	1.00	9.738
Fatal and Injury (FI)	-8.71	0.66	0.28	2.064		2.021	1.00	1.00	2.021
					0.208				
Property Damage Only (PDO)	-5.04	0.45	1.06	7.878	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.792}$	7.716	1.00	1.00	7.716

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(fI)	Predicted $\mathbf{N}_{\text {brsv (FI) }}$ (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathrm{N}_{\text {bisv (total) }}$ (crashes/year)
	from Table 12-6	(9)ff from Worksheet 1E	from Table 12-6	(9)poo from Worksheet	(9)Total from Worksheet 1E
Total	1.000	2.021	1.000	7.716	9.738
		(2)*(3) ${ }_{\text {F1 }}$		(4)**5) ${ }_{\text {PDo }}$	(3)+(5)
Collision with animal	0.001	0.002	0.063	0.486	0.488
Collision with fixed object	0.500	1.011	0.813	6.273	7.284
Collision with other object	0.028	0.057	0.016	0.123	0.180
Other single-vehicle collision	0.471	0.952	0.108	0.833	1.785

(1)	(2)	(3)	(4)	(5)	(6)
	Number of driveways,	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, \mathbf{k}
Driveway Type		from Table 12-7	from Table 12-7	$\frac{\text { Equation } 12-16}{n_{j}{ }^{*} N_{j}{ }^{*}(\text { AADT } / 15,000)^{1}}$	from Table 12-7
Major commercial	0	0.033	1.106	0.000	
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	--
Major residential	0	0.018	1.106	0.000	
Minor residential	0	0.003	1.106	0.000	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.000	1.39

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Initial $\mathrm{N}_{\text {brdwy }}$	$\begin{aligned} & \text { Proportion of total } \\ & \text { crashes }\left(\mathrm{f}_{\mathrm{dwy}}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {brdwy }} \\ \hline \end{gathered}$	Combined CMFs	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {brdwy }}$
	$\overline{(5)_{\text {TOTAL }}}$ from Worksheet 1 G	from Table 12-7	(2) TOTAL * * (3)	(6) from Worksheet 1B		$(4)^{\star}(5)^{*}(6)$
Total	0.000	1.000	0.000	1.00	1.00	0.000
Fatal and injury (FI)	--	0.284	0.000	1.00	1.00	0.000
Property damage only (PDO)	--	0.716	0.000	1.00	1.00	0.000

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	dicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	dicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{N}_{\text {br }}$	f_{p}		Predicted $\mathrm{N}_{\text {pedr }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	$\begin{gathered} \text { from Table } \\ 12-8 \end{gathered}$	factor, C_{r}	$(5)^{*}(6)^{*}(7)$
Total	129.372	9.738	0.000	139.109	0.019	1.00	2.643
Fatal and injury (FI)	--	--	--	--	--	1.00	2.643

	Worksheet 1J -- Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments						
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {biker }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2) $+(3)+(4)$	$\begin{gathered} \hline \text { from Table } \\ 12-9 \\ \hline \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	129.372	9.738	0.000	139.109	0.005	1.00	0.696
Fatal and injury (FI)	--	--	--	--	--	1.00	0.696

(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	27.701	63.603	91.304
Head-on collisions (from Worksheet 1D)	0.666	0.673	1.338
Angle collisions (from Worksheet 1D)	1.332	3.459	4.791
Sideswipe, same direction (from Worksheet 1D)	1.665	21.425	23.090
Sideswipe, opposite direction (from Worksheet 1D)	0.333	0.096	0.429
Driveway-related collisions (from Worksheet 1H)	0.000	0.000	0.000
Other multiple-vehicle collision (from Worksheet 1D)	1.598	6.821	8.420
Subtotal	33.295	96.077	129.372
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.002	0.486	0.488
Collision with fixed object (from Worksheet 1F)	1.011	6.273	7.284
Collision with other object (from Worksheet 1F)	0.057	0.123	0.180
Other single-vehicle collision (from Worksheet 1F)	0.952	0.833	1.785
Collision with pedestrian (from Worksheet 11)	2.643	0.000	2.643
Collision with bicycle (from Worksheet 1J)	0.696	0.000	0.696
Subtotal	5.360	7.716	13.076
Total	38.655	103.793	142.448

(1)	(2)	(3)	(4)
Crash Severity Level	Predicted average crash frequency, $\mathbf{N}_{\text {predicted is }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1K		(2)/(3)
Total	142.4	8.25	17.3
Fatal and injury (FI)	38.7	8.25	4.7
Property damage only (PDO)	103.8	8.25	12.6

(1)	(2)		(3)	(4)	(5)	(6)	(7)	CalibrationFactor, Cr	(9)
Crash Severity Level	SPF Coefficients		OverdispersionParameter, \mathbf{k}	Initial $\mathrm{N}_{\text {bmv }}$	Proportion of Total Crashes	$\begin{gathered} \text { Adjusted } \\ \mathbf{N}_{\text {brmv }} \end{gathered}$	Combined CMFs		Predicted
	from Table 12-3						(6) from		
	a	b				(4)ィ¢	Worksheet 1B		(6)(7)(8)
Total	-12.34	1.36	1.32	129.372	1.000	129.372	1.00	1.00	129.372
Fatal and Injury (FI)	-12.76	1.28	1.31	34.984	$\frac{(4)_{F} /\left((4)_{\mathrm{F}}+(4)_{\mathrm{PDO}}\right)}{0.257}$	33.295	1.00	1.00	33.295
Property Damage Only (PDO)	-12.81	1.38	1.34	100.951	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.743}$	96.077	1.00	1.00	96.077

$\frac{(1)}{\text { Collision Type }}$	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Type(FI)	Predicted \mathbf{N} brmv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brmv (PDO) (crashes/year)	Predicted $\mathbf{N}_{\text {brmv (total) }}$ (crashes/year)
	from Table 12-4	(9)FIf from Worksheet 1C	from Table 12-4	(9)poo from Worksheet 1C	(9)total from Worksheet 1C
Total	1.000	33.295	1.000	96.077	129.372
		(2)* 3$)_{\text {FI }}$		(4)*(5) ${ }_{\text {PDO }}$	(3)+(5)
Rear-end collision	0.832	27.701	0.662	63.603	91.304
Head-on collision	0.020	0.666	0.007	0.673	1.338
Angle collision	0.040	1.332	0.036	3.459	4.791
Sideswipe, same direction	0.050	1.665	0.223	21.425	23.090
Sideswipe, opposite direction	0.010	0.333	0.001	0.096	0.429
Other multiple-vehicle collision	0.048	1.598	0.071	6.821	8.420

Worksheet 1E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Roadway Segments									
(1)			(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash Severity Level	SPF Coefficients		Overdispersion Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$	Proportion of Total Crashes	Adjusted $\mathrm{N}_{\text {brsv }}$	Combined CMFs	Calibration Factor, Cr	Predicted $\mathrm{N}_{\text {brsv }}$
Crash Severity Level	from Table 12-5		from Table 12-5	from Equation 12-13		(4) Total ${ }^{*}$ (5)	(6) from Worksheet 1B		$(6)^{*}(7)^{*}(8)$
Total	-5.05	0.47	0.86	9.738	1.000	9.738	1.00	1.00	9.738
Fatal and Injury (FI)	-8.71	0.66	0.28	2.064	$\frac{(4)_{\mathrm{F}} /\left((4)_{\mathrm{F}}+(4)_{\mathrm{PDO}}\right)}{0.208}$	2.021	1.00	1.00	2.021
Property Damage Only (PDO)	-5.04	0.45	1.06	7.878	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.792}$	7.716	1.00	1.00	7.716

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(FI)	Predicted \mathbf{N} brsv (FI) (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathbf{N}_{\text {brsv (TOTAL) }}$ (crashes/year)
	from Table 12-6	(9)FI from Worksheet 1E	from Table 12-6	(9)poo from Worksheet 1E	(9)total from Worksheet 1E
Total	1.000	2.021	1.000	7.716	9.738
		(2)* $\left.{ }^{*}\right)_{\text {Fl }}$		(4)* $\left.{ }^{*}\right)_{\text {PDO }}$	(3)+(5)
Collision with animal	0.001	0.002	0.063	0.486	0.488
Collision with fixed object	0.500	1.011	0.813	6.273	7.284
Collision with other object	0.028	0.057	0.016	0.123	0.180
Other single-vehicle collision	0.471	0.952	0.108	0.833	1.785

(1)	(2)	(3)	(4)	(5)	(6)
Driveway Type	Number of driveways, n_{j}	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, \mathbf{k}
		from Table 12-7	from Table 12-7	$\frac{\text { Equation 12-16 }}{n_{j}{ }^{*} N_{i}{ }^{*}(\text { AADT } / 15,000)^{1}}$	from Table 12-7
Major commercial	0	0.033	1.106	0.000	--
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	
Major residential	0	0.018	1.106	0.000	
Minor residential	0	0.003	1.106	0.000	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.000	1.39

(1)	(2)	(3)	(4)	(5)	(6)	
Crash Severity Level					Calibration factor, C_{r}	
	Initial $\mathrm{N}_{\text {brdwy }}$	$\text { crashes (} \mathrm{f}_{\mathrm{dwy}} \text {) }$	$\mathbf{N}_{\text {brdwy }}$	Combined CMFs		Predicted $\mathrm{N}_{\text {brdwy }}$
	(5) TOTAL from Worksheet 1G	from Table 12-7	(2) TOTAL ${ }^{\text {* }}$ (3)	(6) from Worksheet 1B		$(4)^{*}(5)^{*}(6)$
Total	0.000	1.000	0.000	1.00	1.00	0.000
Fatal and injury (FI)	--	0.284	0.000	1.00	1.00	0.000
Property damage only (PDO)	--	0.716	0.000	1.00	1.00	0.000

Worksheet 11-- Vehicle-Pedestrian Collisions for Urban and Suburban Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {pedr }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {pedr }}$
	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3) $+(4)$	$\begin{gathered} \hline \text { from Table } \\ 12-8 \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	129.372	9.738	0.000	139.109	0.019	1.00	2.643
Fatal and injury (FI)	--	--	--	--	--	1.00	2.643

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted N_{br}	$\mathrm{f}_{\text {biker }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3) $+(4)$	$\begin{gathered} \text { from Table } \\ 12-9 \\ \hline \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	129.372	9.738	0.000	139.109	0.005	1.00	0.696
Fatal and injury (FI)	--	--	--	--	--	1.00	0.696

Worksheet 1K -- Crash Severity Distribution for Urban and Suburban Roadway Segments			
(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 11 and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1 H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	27.701	63.603	91.304
Head-on collisions (from Worksheet 1D)	0.666	0.673	1.338
Angle collisions (from Worksheet 1D)	1.332	3.459	4.791
Sideswipe, same direction (from Worksheet 1D)	1.665	21.425	23.090
Sideswipe, opposite direction (from Worksheet 1D)	0.333	0.096	0.429
Driveway-related collisions (from Worksheet 1H)	0.000	0.000	0.000
Other multiple-vehicle collision (from Worksheet 1D)	1.598	6.821	8.420
Subtotal	33.295	96.077	129.372
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.002	0.486	0.488
Collision with fixed object (from Worksheet 1F)	1.011	6.273	7.284
Collision with other object (from Worksheet 1F)	0.057	0.123	0.180
Other single-vehicle collision (from Worksheet 1F)	0.952	0.833	1.785
Collision with pedestrian (from Worksheet 11)	2.643	0.000	2.643
Collision with bicycle (from Worksheet 1J)	0.696	0.000	0.696
Subtotal	5.360	7.716	13.076
Total	38.655	103.793	142.448

Crash Severity Level	Predicted average crash frequency, $\mathbf{N}_{\text {predicted rs }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1K		(2)/(3)
Total	142.4	8.25	17.3
Fatal and injury (FI)	38.7	8.25	4.7
Property damage only (PDO)	103.8	8.25	12.6

Worksheet 1C (a) -- Roadway Segment Crashes for Rural Multilane Divided Roadway Segments								
(1)		(2)		(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients			N spf rd	Overdispersion Parameter, k	Combined CMFs	Calibration Factor, Cr	Predicted average crash
		Table				(6) from Worksheet 1B (a)		frequency, $\mathrm{N}_{\text {predicted } \mathrm{rs} \text { (d) }}$
	a	b	c	from Equation 11-9	from Equation 11-10			(3)** 5$)^{*}$ (6)
Total	-9.025	1.049	1.549	83.424	0.010	0.94	1.00	78.418
Fatal and Injury (FI)	-8.837	0.958	1.687	40.993	0.008	0.94	1.00	38.533
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}^{\text {a }}$)	-8.505	0.874	1.740	24.927	0.008	0.94	1.00	23.432
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TOTAL }}-(7)_{\text {FI }}}{39.885}$

$\overline{\text { NOTE: }}$ a Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1D (a) -- Crashes by Severity Level and Collision Type for Rural Multilane Divided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Tуре(тотаL)	$\mathbf{N}_{\text {predicted rs(d) (TOTAL) }}$ (crashes/year)	Proportion of Collision Type(FI)	$\mathbf{N}_{\text {predicted }} \mathrm{rs}(\mathrm{d})$ (FI) (crashes/year)	Proportion of Collision Type (Fl^{a})	N predicted $\mathrm{rs}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathrm{N}_{\text {predicted rs(d) (PDO) }}$ (crashes/year)
	$\begin{array}{\|c} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	(7)total from Worksheet 1C (a)	$\begin{array}{\|c} \hline \text { from Table 11- } \\ 6 \\ \hline \end{array}$	(7)f from Worksheet $1 \mathrm{C}(\mathrm{a})$	$\begin{array}{\|c\|} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	$\begin{gathered} \text { (7) } \mathrm{Fl}^{\mathrm{a}} \text { from Worksheet } \\ 1 \mathrm{C} \text { (a) } \end{gathered}$	$\begin{gathered} \hline \text { from Table } \\ 11-6 \\ \hline \end{gathered}$	(7)poo from Worksheet 1C (a)
Total	1.000	78.418	1.000	38.533	1.000	23.432	1.000	39.885
		(2)* $\left.{ }^{*}\right)_{\text {Total }}$		$(4) \times(5)$ F1		(6)* ${ }^{*}()_{\text {F1 }}{ }^{\text {a }}$		(8)** 9$)_{\text {PDO }}$
Head-on collision	0.006	0.471	0.013	0.501	0.018	0.422	0.002	0.080
Sideswipe collision	0.043	3.372	0.027	1.040	0.022	0.515	0.053	2.114
Rear-end collision	0.116	9.096	0.163	6.281	0.114	2.671	0.088	3.510
Angle collision	0.043	3.372	0.048	1.850	0.045	1.054	0.041	1.635
Single-vehicle collision	0.768	60.225	0.727	28.013	0.778	18.230	0.792	31.589
Other collision	0.024	1.882	0.022	0.848	0.023	0.539	0.024	0.957

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

	Worksheet 1E -- Summary Results for Rural Multilane Roadway Segments		
(1)	(2)	(3)	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
Crash severity level	(7) from Worksheet 1C (a) or (b)	Roadway segment length (mi)	(2)/(3)
Total	78.4	22.0	3.6
Fatal and Injury (FI)	38.5	22.0	1.8
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{\text {a }}\right.$)	23.4	22.0	1.1
Property Damage Only (PDO)	39.9	22.0	1.8

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

	(2)	(3)		(5)	(6)	(7)	(8)	
Collision Type								$\mathrm{N}_{\text {predicted int (PDO) }}$ (crashes/year)
	Proportion of Collision Type(total)	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(FI)	$\mathrm{N}_{\text {predicted int (}}$ (F) (${ }^{\text {(crashes/year) }}$	Proportion of Collision Type ($\mathrm{Fl}^{\text {a }}$)	N predicted int (Fl^{1}) (crashes/vear)	Proportion of Collision Type (PDO)	
	from Table 11-9	(7)total from Worksheet 2C	$\begin{gathered} \text { from Table } \\ 11-9 \\ \hline \end{gathered}$	(7) = f from Worksheet 2C	from Table 11-9	(7) FI^{a} from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	1.000	2.574	1.000	1.212	1.000	0.715	1.000	1.361
		(2)* 3 (Total		(4) $\times(5)_{\text {F1 }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)_{\text {PDO }}$
Head-on collision	0.016	0.041	0.018	0.022	0.023	0.016	0.015	0.020
Sideswipe collision	0.107	0.275	0.042	0.051	0.040	0.029	0.156	0.212
Rear-end collision	0.228	0.587	0.213	0.258	0.108	0.077	0.240	0.327
Angle collision	0.395	1.017	0.534	0.647	0.571	0.408	0.292	0.397
Single-vehicle collision	0.202	0.520	0.148	0.179	0.199	0.142	0.243	0.331
Other collision	0.052	0.134	0.045	0.055	0.059	0.042	0.054	0.074

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)			Observedcrashes,$N_{\text {observed }}$(crashes/year)	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\mathrm{p} / \text { comb }}$
	$\mathrm{N}_{\text {predicted }}$ (TOTAL)	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & (\mathrm{PDO}) \end{aligned}$			$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \end{gathered}$	$\begin{aligned} & \text { Equation A-9 } \\ & \text { sgrt((6)*(2)) } \end{aligned}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-10 \end{gathered}$	$\begin{aligned} & \text { Equation } \\ & \text { A-11 } \end{aligned}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-12 \end{gathered}$	$\begin{aligned} & \text { Equation } \\ & \text { A-13 } \end{aligned}$	$\begin{gathered} \text { Equation } \\ \text { A-14 } \end{gathered}$
Re_ ROADWAY SEGMENTS												
Segment_Divided_1	78.418	38.533	39.885	--	0.010	59.386	0.870	--	--	--	--	--
Segment_Divided_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	78.418	38.533	39.885									
INTERSECTIONS												
Intersection_1	72.062	33.946	38.116	--	0.494	2565.294	5.966	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersesection Totals:	72.062	33.946	38.116									
COMBINED (sum of column)	150.480	72.479	78.001	0	--	\#REF!						

Worksheet 1C (a) -- Roadway Segment Crashes for Rural Multilane Divided Roadway Segments								
	SPF Coefficients			N spf rd	Overdispersion Parameter, \mathbf{k}		Calibration Factor, Cr	Predicted average crash frequency, $\mathrm{N}_{\text {predicted rs(d) }}$ (3)* 5$)^{*}$ (6)
Crash Severity Level				(6) from Worksheet 1B (a)				
	a	b	c		from Equation 11-9	from Equation 11-10		
Total	-9.025	1.049	1.549	175.083	0.010	0.94	1.00	164.578
Fatal and Injury (FI)	-8.837	0.958	1.687	80.673	0.008	0.94	1.00	75.833
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{\text {a }}\right.$)	-8.505	0.874	1.740	46.230	0.008	0.94	1.00	43.456
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TOTAL }}-(7)_{\text {FI }}}{88.745}$

$\overline{\text { NOTE: }}$ a Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1D (a) -- Crashes by Severity Level and Collision Type for Rural Multilane Divided Roadway Segments								
Collision Type	(2)	((4)	(5)	(6)	(7)	(8)	(9)
	Proportion of Collision Tуре(total)	\mathbf{N} predicted risd ((ToTAL) (crashes/year)	Collision Type(FI)	$\mathbf{N}_{\text {predicted } \mathrm{rs}(\mathrm{d})(\mathrm{FI})}$ (crashes/year)	Proportion of Collision Type ($\mathrm{FI}^{\text {a }}$)	N predicted $\mathrm{rs}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted rs(d) (PDO) }}$ (crashes/year)
	$\begin{array}{\|c} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	(7)total from Worksheet 1C (a)	$\begin{gathered} \text { from Table 111 } \\ 6 \end{gathered}$	(7)f: from Worksheet 1C (a)	$\begin{array}{\|c\|} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	$\begin{gathered} \hline(7)_{\mathrm{F} 1}{ }^{\mathrm{a}} \text { from Worksheet } \\ 1 \mathrm{C} \text { (a) } \\ \hline \end{gathered}$	$\begin{gathered} \text { from Table } \\ 11-6 \end{gathered}$	(7)poo from Worksheet 1C (a)
Total	1.000	164.578	1.000	75.833	1.000	43.456	1.000	88.745
		(2)* $\left.{ }^{*}\right)_{\text {Total }}$		(4) $\times(5)_{\text {F1 }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		(8)** 9$)_{\text {PDO }}$
Head-on collision	0.006	0.987	0.013	0.986	0.018	0.782	0.002	0.177
Sideswipe collision	0.043	7.077	0.027	2.047	0.022	0.956	0.053	4.703
Rear-end collision	0.116	19.091	0.163	12.361	0.114	4.954	0.088	7.810
Angle collision	0.043	7.077	0.048	3.640	0.045	1.956	0.041	3.639
Single-vehicle collision	0.768	126.396	0.727	55.131	0.778	33.809	0.792	70.286
Other collision	0.024	3.950	0.022	1.668	0.023	0.999	0.024	2.130

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

	Worksheet 1E -- Summary Results for Rural Multilane Roadway Segments		
(1)	(2)	(3)	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
Crash severity level	(7) from Worksheet 1C (a) or (b)	Roadway segment length (mi)	(2)/(3)
Total	164.6	22.0	7.5
Fatal and Injury (FI)	75.8	22.0	3.4
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{\text {a }}\right.$)	43.5	22.0	2.0
Property Damage Only (PDO)	88.7	22.0	4.0

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

General Information				Location Information	
Analyst Agency or Company Date Performed	$\begin{gathered} \text { MWD } \\ \text { CMT } \\ 04 / 07 / 20 \end{gathered}$			Roadway Intersection Jurisdiction Analysis Year	US 60 (One-Directional) Standard Intersection MoDOT 2020
Input Data				Base Conditions	Site Conditions 2020
Intersection type (3ST, 4ST, 4SG)				--	4ST
$\mathrm{AADT}_{\text {major }}$ (veh/day)	AADT $_{\text {max }}=$	78,300	(veh/day)	--	39,370
$\mathrm{AADT}_{\text {minor }}$ (veh/day)	AADT $_{\text {max }}=$	7,400	(veh/day)	--	800
Intersection skew angle (degrees)				0	10
Number of non-STOP-controlled approaches with left-turn lanes (0, 1, 2)				0	
Number of non-STOP-controlled approaches with right-turn lanes ($0,1,2,3$, or 4)				0	0
Intersection lighting (present/not present)				Not Present	Not Present
Calibration Factor, C_{i}				1.00	1.00

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Multilane Highway Intersections								
Collision Type	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Proportion of Collision Type(Total)	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(F)	$\mathbf{N}_{\text {predicted int (F) }}$ (crashes/year)	Proportion of Collision Type ($\mathrm{Fl}^{\text {a }}$)	N predicted int (Fl^{a}) (crashes/vear)	Proportion of Collision Type (PDO)	$\mathrm{N}_{\text {predicted int }}$ (PDo) ((rashes/year)
	from Table 11-9	(7)Total from Worksheet 2C	$\begin{gathered} \text { from Table } \\ 11-9 \end{gathered}$	(7)fl from Worksheet 2C	from Table 11-9	(7) $\mathrm{Fl}^{\text {a }}$ from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	1.000	4.686	1.000	2.271	1.000	1.284	1.000	2.415
		(2)* 3$)_{\text {Total }}$		(4) $\times(5)$ ¢ 1		(6) ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)_{\text {PDO }}$
Head-on collision	0.016	0.075	0.018	0.041	0.023	0.030	0.015	0.036
Sideswipe collision	0.107	0.501	0.042	0.095	0.040	0.051	0.156	0.377
Rear-end collision	0.228	1.068	0.213	0.484	0.108	0.139	0.240	0.580
Angle collision	0.395	1.851	0.534	1.213	0.571	0.733	0.292	0.705
Single-vehicle collision	0.202	0.947	0.148	0.336	0.199	0.255	0.243	0.587
Other collision	0.052	0.244	0.045	0.102	0.059	0.076	0.054	0.130

NOTE: ${ }^{a}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included

Worksheet 1C (a) -- Roadway Segment Crashes for Rural Multilane Divided Roadway Segments								
(1)		(2)		(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients			N spf rd	Overdispersion Parameter, k	Combined CMFs	Calibration Factor, Cr	Predicted average crashfrequency, $\mathrm{N}_{\text {predicted } \mathrm{s} \text { (d) }}$
		Table				(6) from Worksheet 1B (a)		
	a	b	c	from Equation 11-9	from Equation 11-10			$(3)^{*}(5)^{*}(6)$
Total	-9.025	1.049	1.549	240.670	0.010	0.94	1.00	226.230
Fatal and Injury (FI)	-8.837	0.958	1.687	107.876	0.008	0.94	1.00	101.403
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}^{\text {a }}$)	-8.505	0.874	1.740	60.263	0.008	0.94	1.00	56.647
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\begin{aligned} & (7)_{\text {Total }}-(7)_{\text {FII }} \end{aligned}$

$\overline{\text { NOTE: }}$ a Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1D (a) -- Crashes by Severity Level and Collision Type for Rural Multilane Divided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted rs(d) (TOTAL) }}$ (crashes/year)	Proportion of Collision Type(FI)	$\mathrm{N}_{\text {predicted rs(d) (FI) }}$ (crashes/year)	Proportion of Collision Type (Fl^{a})	N predicted rs (FI^{a}) (crashes/year)	Proportion of Collision Type (PDO)	$\mathrm{N}_{\text {predicted rs(d) (PDO) }}$ (crashes/year)
	$\begin{gathered} \hline \text { from Table } \\ 11-6 \\ \hline \end{gathered}$	(7)Total from Worksheet 1C (a)	$\begin{gathered} \text { from Table } 11- \\ 6 \\ \hline \end{gathered}$	(7)ff from Worksheet 1 C (a)	$\begin{array}{\|c} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline(7)_{\mathrm{FI}}{ }^{\mathrm{a}} \text { from Worksheet } \\ 1 \mathrm{C}(\mathrm{a}) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	(7)pDo from Worksheet 1C (a)
Total	1.000	226.230	1.000	101.403	1.000	56.647	1.000	124.827
		(2)* 3$)_{\text {Total }}$		(4) $\times(5)_{\text {F1 }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		(8)** ${ }^{\text {(9) poo }}$
Head-on collision	0.006	1.357	0.013	1.318	0.018	1.020	0.002	0.250
Sideswipe collision	0.043	9.728	0.027	2.738	0.022	1.246	0.053	6.616
Rear-end collision	0.116	26.243	0.163	16.529	0.114	6.458	0.088	10.985
Angle collision	0.043	9.728	0.048	4.867	0.045	2.549	0.041	5.118
Single-vehicle collision	0.768	173.745	0.727	73.720	0.778	44.071	0.792	98.863
Other collision	0.024	5.430	0.022	2.231	0.023	1.303	0.024	2.996

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	(3)	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)(3)
Total	226.2	22.0	10.3
Fatal and Injury (FI)	101.4	22.0	4.6
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{FI}{ }^{\text {a }}$)	56.6	22.0	2.6
Property Damage Only (PDO)	124.8	22.0	5.7

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Multilane Highway Intersections								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Туре(тотаи)	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(FI) Py	$\mathbf{N}_{\text {predicted int (Fl) }}($ crashes/year)	Proportion of Collision Type (F1a)	N predicted int (Fl^{1}) (crashes/vear)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted int (PDo) }}$ (crashes/year)
	from Table 11-9	(7)total from Worksheet 2C	$\begin{gathered} \hline \text { from Table } \\ 11-9 \\ \hline \end{gathered}$	(7) F f from Worksheet 2 C	from Table 11-9	(7) FI^{a} from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	1.000	6.061	1.000	2.973	1.000	1.650	1.000	3.088
		(2)* 3$)_{\text {Total }}$		(4) \times (5) ${ }_{\text {F1 }}$		(6)** 7$)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9){ }_{\text {PDO }}$
Head-on collision	0.016	0.097	0.018	0.054	0.023	0.038	0.015	0.046
Sideswipe collision	0.107	0.648	0.042	0.125	0.040	0.066	0.156	0.482
Rear-end collision	0.228	1.382	0.213	0.633	0.108	0.178	0.240	0.741
Angle collision	0.395	2.394	0.534	1.587	0.571	0.942	0.292	0.902
Single-vehicle collision	0.202	1.224	0.148	0.440	0.199	0.328	0.243	0.750
Other collision	0.052	0.315	0.045	0.134	0.059	0.097	0.054	0.167

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)			Observed crashes,	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\text {p/comb }}$
	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & \text { (TOTAL) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & (\mathrm{FI}) \end{aligned}$	$\mathrm{N}_{\text {predicted }}$ (PDO)	$\begin{gathered} N_{\text {observed }} \\ \text { (crashes/year) } \end{gathered}$		$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Equation A-9 } \\ & \text { sart((6)*(2)) } \end{aligned}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \text { A-11 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_Divided_1	226.230	101.403	124.827	--	0.010	494.261	1.478	--	--	--	--	--
Segment_Divided_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	226.230	101.403	124.827									
(INTERSECTIONS												
Intersection_1	169.696	83.233	86.463	--	0.494	14225.653	9.156	--	--	--	--	--
Intersection_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersesection Totals:	169.696	83.233	86.463									
COMBINED (sum of column)	395.927	184.636	211.290	0	--	\#REF!						

General Information				Location Information				
Analyst Agency or Company Date Performed				Roadway Roadway Section Jurisdiction Analysis Year		Hwy AUS-60 to MO 38MoDOT2020		
Input Data				Base Conditions	Site Conditions			
Length of segment, L (mi)				--	13.94			
AADT (veh/day)	AADT $_{\text {max }}=$	17,800	(veh/day)	--			2,590	
Lane width (ft)				12	12			
Shoulder width (ft)				6	Right Shld: Right Shld:	1	Left Shld:	1
Shoulder type				Paved		Paved	Left Shld:	Paved
Length of horizontal curve (mi)				0	0.5			
Radius of curvature (ft)				0	820			
Spiral transition curve (present/not present)				Not Present	Not Present			
Superelevation variance (ft/ft)				< 0.01	0.035			
Grade (\%)				0	3			
Driveway density (driveways/mile)				5	5.00			
Centerline rumble strips (present/not present)				Not Present	Not Present			
Passing lanes [present (1 lane)/present (2 lane)/ not present)]				Not Present	Not Present			
Two-way left-turn lane (present/not present)				Not Present	Not Present			
Roadside hazard rating (1-7 scale)				3	3			
Segment lighting (present/not present)				Not Present	Not Present			
Auto speed enforcement (present/not present)				Not Present	Not Present			
Calibration Factor, Cr				1	1.00			

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for Lane Width	CMF for Shoulder Width and Type	CMF for Horizontal Curves	CMF for Superelevation	CMF for Grades	CMF for Driveway Density	CMF for Centerline Rumble Strips	CMF for Passing Lanes	CMF for Two-Way Left-Turn Lane	CMF for Roadside Design	CMF for Lighting	CMF for Automated Speed Enforcemen	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb
from Equation 10-11	$\begin{aligned} & \text { from Equation } \\ & 10-12 \end{aligned}$	from Equation 10-13	$\begin{array}{\|c\|} \hline \text { from Equations } \\ 10-14,10-15 \\ \text { or } 10-16 \end{array}$	$\begin{gathered} \text { from Table } \\ 10-11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { from } \\ \text { Equation } 10-17 \\ 17 \end{array}$	from Section 10.7.1	$\begin{array}{c\|} \hline \text { from } \\ \text { Section } \\ \text { 10.7.1 } \end{array}$	from Equation $10-18 \& 10-$ 19	from Equation 10 - 20	from Equation 10-21	$\left\|\begin{array}{c} \text { from Section } \\ \text { 10.7.1 } \end{array}\right\|$	$\begin{array}{\|c} \hline(1) \times(2) x \\ \ldots \\ x(11) \times(12) \end{array}$
1.00	1.23	1.13	1.11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.530

Worksheet 1C -- Roadway Segment Crashes for Rural Two-Lane Two-Way Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	N spf rs	Overdispersion Parameter,	Crash Severity Distribution	N spf rs by Severity Distribution	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, Cr	Predicted average crash frequency, \qquad
	from Equation 10-6	from Equation 10-7	from Table 10-3 (proportion)	(2)TOTAL \times (4)	(13) from Worksheet 1B		(5) $\mathrm{x}(6) \mathrm{x}(7)$
Total	9.646	0.02	1.000	9.646	1.53	1.00	14.760
Fatal and Injury (FI)	--	--	0.321	3.096	1.53	1.00	4.738
Property Damage Only (PDO)	--	--	0.679	6.550	1.53	1.00	10.022

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Type(total)	\mathbf{N} predicted rs (TOTAL) (crashes/year)	Proportion of Collision Type(FI)	$\mathbf{N}_{\text {predicted } I s \text { (}}$ (II) (crashes/year)	Proportion of Collision Type(PDO)	$\mathbf{N}_{\text {predicted }}$ s (PDO) (crashes/year)
	from Table $10-4$	(8)total from Worksheet 1C	from Table 10-4	(8)f1 from Worksheet 1C	from Table 10-4	(8)pDo from Worksheet 1C
Total	1.000	14.760	1.000	4.738	1.000	10.022
		(2) x (3) TOTAL		(4) $\mathrm{x}(5) \mathrm{FI}$		(6)x(7)PDo
SINGLE-VEHICLE						
Collision with animal	0.121	1.786	0.038	0.180	0.184	1.844
Collision with bicycle	0.002	0.030	0.004	0.019	0.001	0.010
Collision with pedestrian	0.003	0.044	0.007	0.033	0.001	0.010
Overturned	0.025	0.369	0.037	0.175	0.015	0.150
Ran off road	0.521	7.690	0.545	2.582	0.505	5.061
Other single-vehicle collision	0.021	0.310	0.007	0.033	0.029	0.291
Total single-vehicle crashes	0.693	10.229	0.638	3.023	0.735	7.366
MULTIPLE-VEHICLE						
Angle collision	0.085	1.255	0.100	0.474	0.072	0.722
Head-on collision	0.016	0.236	0.034	0.161	0.003	0.030
Rear-end collision	0.142	2.096	0.164	0.777	0.122	1.223
Sideswipe collision	0.037	0.546	0.038	0.180	0.038	0.381
Other multiple-vehicle collision	0.027	0.399	0.026	0.123	0.030	0.301
Total multiple-vehicle crashes	0.307	4.531	0.362	1.715	0.265	2.656

(1)	(2)	(3)	(4)	(5)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes $/ \mathrm{mi} /$ year)
	(4) from Worksheet 1C	(8) from Worksheet 1C		(3)/(4)
Total	1.000	14.8	13.94	1.1
Fatal and Injury (FI)	0.321	4.7	13.94	0.3
Property Damage Only (PDO)	0.679	10.0	13.94	0.7

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Two-Lane Two-Way Road Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Typeatotal	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(FI)	N predicted int (F) (crashes/year)	Proportion of Collision Type(PDO)	N predicted int (PDo) (crashes/year)
	$\begin{gathered} \text { from Table } \\ 10-6 \end{gathered}$	(8)total from Worksheet 2 C	from Table 10-6	(8)fı from Worksheet 2C	from Table 10-6	(8)poo from Worksheet 2C
Total	1.000	0.375	1.000	0.162	1.000	0.213
		(2) \times (3) Total		(4) $\mathrm{x}(5) \mathrm{FI}$		(6) x (7) Pro
SINGLE-VEHICLE						
Collision with animal	0.010	0.004	0.006	0.001	0.014	0.003
Collision with bicycle	0.001	0.000	0.001	0.000	0.001	0.000
Collision with pedestrian	0.001	0.000	0.001	0.000	0.001	0.000
Overturned	0.005	0.002	0.006	0.001	0.004	0.001
Ran off road	0.122	0.046	0.094	0.015	0.144	0.031
Other single-vehicle collision	0.008	0.003	0.004	0.001	0.010	0.002
Total single-vehicle crashes	0.147	0.055	0.112	0.018	0.174	0.037
MULTIPLE-VEHICLE						
Angle collision	0.431	0.162	0.532	0.086	0.354	0.076
Head-on collision	0.040	0.015	0.060	0.010	0.025	0.005
Rear-end collision	0.242	0.091	0.210	0.034	0.266	0.057
Sideswipe collision	0.101	0.038	0.044	0.007	0.144	0.031
Other multiple-vehicle collision	0.039	0.015	0.042	0.007	0.037	0.008
Total multiple-vehicle crashes	0.853	0.320	0.888	0.143	0.826	0.176

Worksheet 2E -- Summary Results for Rural Two-Lane Two-Way Road Intersections		
(1)	(2)	(3)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes / year)
	(4) from Worksheet 2C	(8) from Worksheet 2C
Total	1.000	0.4
Fatal and Injury (FI)	0.431	0.2
Property Damage Only (PDO)	0.569	0.2

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)			Observedcrashes,$N_{\text {observed }}$(crashes/year)	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\text {p/comb }}$
	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & \text { (TOTAL) } \\ & \hline \end{aligned}$	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & (\mathrm{PDO}) \\ & \hline \end{aligned}$			$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation A-9 } \\ \text { sqrt((6)*(2)) } \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \text { A-12 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_1	14.760	4.738	10.022	--	0.017	3.688	0.500	--	--	--	--	--
Segment_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_7	0.000	0.000	0.000	--	0.000	0.000	0.000					
Segment_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	14.760	4.738	10.022									
INTERSECTIONS												
Intersection_1	4.873	2.100	2.773	--	0.240	5.700	1.081	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection Totals:	4.873	2.100	2.773									
COMBINED	19.634	6.838	12.795	0	--	9.388	1.581	0.677	13.282	0.925	18.170	15.726

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for Lane Width	CMF for Shoulder Width and Type	CMF for Horizontal Curves	CMF for Superelevation	CMF for Grades	CMF for Driveway Density	CMF for Centerline Rumble Strips	CMF for Passing Lanes	CMF for Two-Way Left-Turn Lane	CMF for Roadside Design	CMF for Lighting	CMF for Automated Speed Enforcemen	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb
from Equation 10-11	$\begin{aligned} & \text { from Equation } \\ & 10-12 \end{aligned}$	from Equation 10-13	$\begin{array}{\|c\|} \hline \text { from Equations } \\ 10-14,10-15 \\ \text { or } 10-16 \end{array}$	$\begin{gathered} \text { from Table } \\ 10-11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { from } \\ \text { Equation } 10-17 \\ 17 \end{array}$	from Section 10.7.1	$\begin{array}{c\|} \hline \text { from } \\ \text { Section } \\ \text { 10.7.1 } \end{array}$	from Equation $10-18 \& 10-$ 19	from Equation 10 - 20	from Equation 10-21	$\left\|\begin{array}{c} \text { from Section } \\ \text { 10.7.1 } \end{array}\right\|$	$\begin{array}{\|c} \hline(1) \times(2) x \\ \ldots \\ x(11) \times(12) \end{array}$
1.00	1.23	1.13	1.11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.530

Worksheet 1C -- Roadway Segment Crashes for Rural Two-Lane Two-Way Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	N spf rs	Overdispersion Parameter, k	Crash Severity Distribution	N spf rs by Severity Distribution	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, Cr	Predicted average crash frequency, \qquad
	from Equation 10-6	from Equation 10-7	from Table 10-3 (proportion)	(2)TOTAL \times (4)	(13) from Worksheet 1B		(5) $\mathrm{x}(6) \mathrm{x}(7)$
Total	66.294	0.02	1.000	66.294	1.53	1.00	101.442
Fatal and Injury (FI)	--	--	0.321	21.280	1.53	1.00	32.563
Property Damage Only (PDO)	--	--	0.679	45.014	1.53	1.00	68.879

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Type(total)	\mathbf{N} predicted rs (TOTAL) (crashes/year)	Proportion of Collision Type(FI)	$\mathbf{N}_{\text {predicted }}$ ss (FI) (crashes/year)	Proportion of Collision Type(PDO)	$\mathbf{N}_{\text {predicted }}$ ss (PDO) (crashes/year)
	from Table $10-4$	(8)total from Worksheet 1C	from Table 10-4	(8)FI from Worksheet 1C	from Table 10-4	(8)pDo from Worksheet 1C
Total	1.000	101.442	1.000	32.563	1.000	68.879
		(2) x (3) TOTAL		(4) $\mathrm{x}(5) \mathrm{FI}$		(6)x(7)PDo
SINGLE-VEHICLE						
Collision with animal	0.121	12.274	0.038	1.237	0.184	12.674
Collision with bicycle	0.002	0.203	0.004	0.130	0.001	0.069
Collision with pedestrian	0.003	0.304	0.007	0.228	0.001	0.069
Overturned	0.025	2.536	0.037	1.205	0.015	1.033
Ran off road	0.521	52.851	0.545	17.747	0.505	34.784
Other single-vehicle collision	0.021	2.130	0.007	0.228	0.029	1.997
Total single-vehicle crashes	0.693	70.299	0.638	20.775	0.735	50.626
MULTIPLE-VEHICLE						
Angle collision	0.085	8.623	0.100	3.256	0.072	4.959
Head-on collision	0.016	1.623	0.034	1.107	0.003	0.207
Rear-end collision	0.142	14.405	0.164	5.340	0.122	8.403
Sideswipe collision	0.037	3.753	0.038	1.237	0.038	2.617
Other multiple-vehicle collision	0.027	2.739	0.026	0.847	0.030	2.066
Total multiple-vehicle crashes	0.307	31.143	0.362	11.788	0.265	18.253

(1)	(2)	(3)	(4)	(5)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes $/ \mathrm{mi} /$ year)
	(4) from Worksheet 1C	(8) from Worksheet 1C		(3)/(4)
Total	1.000	101.4	13.94	7.3
Fatal and Injury (FI)	0.321	32.6	13.94	2.3
Property Damage Only (PDO)	0.679	68.9	13.94	4.9

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency(crashes/year)			Observedcrashes,$\mathrm{N}_{\text {observed }}$(crashes/year)	$\begin{array}{\|c\|} \hline \text { Overdispersion } \\ \text { Parameter, k } \end{array}$	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\mathrm{p} / \text { comb }}$
	$\mathrm{N}_{\text {predicted }}$ (TOTAL)	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{gathered} \mathrm{N}_{\text {predicted }} \\ \text { (PDO) } \\ \hline \end{gathered}$			$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \end{gathered}$	$\begin{aligned} & \hline \text { Equation A-9 } \\ & \text { sqrt((6)*(2)) } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Equation } \mathrm{A} \\ 10 \end{array}$	$\begin{gathered} \hline \text { Equation } \mathrm{A}- \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \mathrm{A} \\ 12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \mathrm{A} \\ 13 \end{gathered}$	$\begin{gathered} \text { Equation } \mathrm{A}- \\ 14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_1	125.281	40.215	85.066	--	0.017	265.716	1.456	-	--	--	--	--
Segment_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 7	0.000	0.000	0.000	--	0.000	0.000	0.000					
Segment_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	125.281	40.215	85.066									
INTERSECTIONS												
Intersection_1	19.625	8.459	11.167	--	0.240	92.438	2.170	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection Totals:	19.625	8.459	11.167									
COMBINED	144.906	48.674	96.232	0	--	358.154	3.627	0.288	41.740	0.976	141.368	91.554

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for Lane Width	CMF for Shoulder Width and Type	CMF for Horizontal Curves	CMF for Superelevation	CMF for Grades	CMF for Driveway Density	CMF for Centerline Rumble Strips	CMF for Passing Lanes	CMF for Two-Way Left-Turn Lane	CMF for Roadside Design	CMF for Lighting	CMF for Automated Speed Enforcemen	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb
from Equation 10-11	$\begin{aligned} & \text { from Equation } \\ & 10-12 \end{aligned}$	from Equation 10-13	$\begin{array}{\|c\|} \hline \text { from Equations } \\ 10-14,10-15 \\ \text { or } 10-16 \end{array}$	$\begin{gathered} \text { from Table } \\ 10-11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { from } \\ \text { Equation } 10-17 \\ 17 \end{array}$	from Section 10.7.1	$\begin{array}{c\|} \hline \text { from } \\ \text { Section } \\ \text { 10.7.1 } \end{array}$	from Equation $10-18 \& 10-$ 19	from Equation 10 - 20	from Equation 10-21	$\left\|\begin{array}{c} \text { from Section } \\ \text { 10.7.1 } \end{array}\right\|$	$\begin{array}{\|c} \hline(1) \times(2) x \\ \ldots \\ x(11) \times(12) \end{array}$
1.00	1.23	1.13	1.11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.530

Worksheet 1C -- Roadway Segment Crashes for Rural Two-Lane Two-Way Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	N spf rs	Overdispersion Parameter, k	Crash Severity Distribution	N spf rs by Severity Distribution	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, Cr	Predicted average crash frequency, \qquad
	from Equation 10-6	from Equation 10-7	from Table 10-3 (proportion)	(2)TOTAL \times (4)	(13) from Worksheet 1B		(5) $\mathrm{x}(6) \mathrm{x}(7)$
Total	66.294	0.02	1.000	66.294	1.53	1.00	101.442
Fatal and Injury (FI)	--	--	0.321	21.280	1.53	1.00	32.563
Property Damage Only (PDO)	--	--	0.679	45.014	1.53	1.00	68.879

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Type(total)	\mathbf{N} predicted rs (TOTAL) (crashes/year)	Proportion of Collision Type(FI)	$\mathbf{N}_{\text {predicted }}$ ss (FI) (crashes/year)	Proportion of Collision Type(PDO)	$\mathbf{N}_{\text {predicted }}$ ss (PDO) (crashes/year)
	from Table $10-4$	(8)total from Worksheet 1C	from Table 10-4	(8)FI from Worksheet 1C	from Table 10-4	(8)pDo from Worksheet 1C
Total	1.000	101.442	1.000	32.563	1.000	68.879
		(2) x (3) TOTAL		(4) $\mathrm{x}(5) \mathrm{FI}$		(6)x(7)PDo
SINGLE-VEHICLE						
Collision with animal	0.121	12.274	0.038	1.237	0.184	12.674
Collision with bicycle	0.002	0.203	0.004	0.130	0.001	0.069
Collision with pedestrian	0.003	0.304	0.007	0.228	0.001	0.069
Overturned	0.025	2.536	0.037	1.205	0.015	1.033
Ran off road	0.521	52.851	0.545	17.747	0.505	34.784
Other single-vehicle collision	0.021	2.130	0.007	0.228	0.029	1.997
Total single-vehicle crashes	0.693	70.299	0.638	20.775	0.735	50.626
MULTIPLE-VEHICLE						
Angle collision	0.085	8.623	0.100	3.256	0.072	4.959
Head-on collision	0.016	1.623	0.034	1.107	0.003	0.207
Rear-end collision	0.142	14.405	0.164	5.340	0.122	8.403
Sideswipe collision	0.037	3.753	0.038	1.237	0.038	2.617
Other multiple-vehicle collision	0.027	2.739	0.026	0.847	0.030	2.066
Total multiple-vehicle crashes	0.307	31.143	0.362	11.788	0.265	18.253

(1)	(2)	(3)	(4)	(5)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes $/ \mathrm{mi} /$ year)
	(4) from Worksheet 1C	(8) from Worksheet 1C		(3)/(4)
Total	1.000	101.4	13.94	7.3
Fatal and Injury (FI)	0.321	32.6	13.94	2.3
Property Damage Only (PDO)	0.679	68.9	13.94	4.9

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)			$\begin{aligned} & \hline \text { Observed } \\ & \text { crashes, } \\ & \mathrm{N}_{\text {observed }} \\ & \text { (crashes/year) } \\ & \hline \end{aligned}$	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\mathrm{p} / \text { comb }}$
	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & \text { (TOTAL) } \end{aligned}$	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & \text { (PDO) } \end{aligned}$			$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation A-9 } \\ \text { sqrt((6)* }(2)) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_1	125.281	40.215	85.066	--	0.017	265.716	1.456	--	--	--	--	--
Segment_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_7	0.000	0.000	0.000	--	0.000	0.000	0.000					
Segment_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	125.281	40.215	85.066									
[INTERSECTIONS												
Intersection_1	19.625	8.459	11.167	--	0.240	92.438	2.170	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection Totals:	19.625	8.459	11.167									
COMBINED	144.906	48.674	96.232	0	--	358.154	3.627	0.288	41.740	0.976	141.368	91.554

Worksheet 1B -- Crash Modification Factors for Urban and Suburban Roadway Segments					
(1)	(2)	(3)	(4)	(5)	(6)
CMF for On-Street Parking	CMF for Roadside Fixed Objects	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF
CMF 1 r	CMF 2 2r	CMF 3r	CMF 4 r	CMF 5 r	CMF comb
from Equation 12-32	from Equation 12-33	from Table 12-22	from Equation 12-34	from Section 12.7.1	$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)$
1.00	1.00	1.00	1.00	1.00	1.00

(1)	(2)			(4)Initial $\mathrm{N}_{\text {brmv }}$	Proportion of Total Crashes	(6)	(7)	(8)	$\begin{gathered} \hline \text { (9) } \\ \hline \text { Predicted } \\ \mathrm{N}_{\text {brmv }} \\ \hline \end{gathered}$
Crash Severity Level	SPF Coefficients					Adjusted	Combined	Calibration Factor, Cr	
	from Table 12-3		from Table 12-3	from Equation 12-10		(4)тотаи ${ }^{\text {(}}$ (5)	(6) from		(6) $)^{*}(7)^{*}(8)$
	,	b					Worksheet 1B		
Total	-12.34	1.36	1.32	822.551	1.000	822.551	1.00	1.00	822.551
Fatal and Injury (FI)	-12.76	1.28	1.31	231.569	$\frac{(4)_{F F} /\left((4)_{F_{i}+}(4)_{\text {PDo }}\right.}{0.267}$	219.699	1.00	1.00	219.699
Property Damage Only (PDO)	-12.81	1.38	1.34	635.424	$\frac{(5)_{\text {TOTAL }}-(5)_{\mathrm{FI}}}{0.733}$	602.852	1.00	1.00	602.852

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(f)	Predicted \mathbf{N} brmu((F)) (crashes/year)	Proportion of Collision Type ${ }_{\text {(PDO) }}$	$\begin{aligned} & \text { Predicted } \mathbf{N}_{\text {irmv (PDo) }} \\ & \text { (crashes/year) } \end{aligned}$	Predicted $\mathrm{N}_{\text {brmv (total) }}$ (crashes/year)
	from Table 12-4	(9)ff from Worksheet 1C	from Table 12-4	(9)poo from Worksheet 1 C	(9)total from Worksheet 1C
Total	1.000	219.699	1.000	602.852	822.551
		(2)** ${ }^{\text {F }}$ F।		(4)*(5) poo	(3)+(5)
Rear-end collision	0.832	182.789	0.662	399.088	581.877
Head-on collision	0.020	4.394	0.007	4.220	8.614
Angle collision	0.040	8.788	0.036	21.703	30.491
Sideswipe, same direction	0.050	10.985	0.223	134.436	145.421
Sideswipe, opposite direction	0.010	2.197	0.001	0.603	2.800
Other multiple-vehicle collision	0.048	10.546	0.071	42.802	53.348

Worksheet 1E -- Single-Vehicle Collisions by Severity Level for Urban and Suburban Roadway Segments									
Crash Severity Level	SPF Coefficients		(3)	(4)	Proportion of Total Crashes	${ }_{\text {Adjusted }}^{(6)}$		Calibration Factor, Cr	$\frac{(9)}{\text { Predicted }}$
			Overdispersion Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$		${ }^{\text {Adusted }}$	CMFs		$\mathrm{N}_{\text {brsv }}$
	from Table 12-5		from Table 12-5	from Equation 12-13		(4) Total * (5)	(6) from Worksheet 1B		(6)**(7)* (8)
Total	-5.05	0.47	0.86	96.895	1.000	96.895	1.00	1.00	96.895
Fatal and Injury (FI)	-8.71	0.66	0.28	18.663	$\frac{\left.(4)_{\mathrm{Fl}} /(4)_{\mathrm{F}+}+(4)_{\mathrm{PDO}}\right)}{0.191}$	18.481	1.00	1.00	18.481
Property Damage Only (PDO)	-5.04	0.45	1.06	79.182	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FII }}}{0.809}$	78.414	1.00	1.00	78.414

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(F)	Predicted $\mathbf{N}_{\text {brss (}}$ (F) (crashes/year)	Proportion of Collision Type (PDO)	$\begin{aligned} & \text { Predicted } \mathbf{N}_{\text {bisv }} \text { (PDO) } \\ & \text { (crashes/year) } \end{aligned}$	Predicted $\mathrm{N}_{\text {brsv (Total) }}$ (crashes/year)
	from Table 12-6	(9)Ff from Worksheet 1E	from Table 12-6	(9)poo from Worksheet 1E	(9)Trotal from Worksheet 1E
Total	1.000	18.481	1.000	78.414	96.895
		(2)** $)_{\text {FI }}$		(4)**(5) ${ }_{\text {poo }}$	(3)+(5)
Collision with animal	0.001	0.018	0.063	4.940	4.959
Collision with fixed object	0.500	9.241	0.813	63.751	72.991
Collision with other object	0.028	0.517	0.016	1.255	1.772
Other single-vehicle collision	0.471	8.705	0.108	8.469	17.173

(1)	(2)	(3)	(4)	(5)	(6)
Driveway Type	Number of driveways, n_{j}	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, k
		from Table 12-7	from Table 12-7	$\frac{\text { Equation } 12-16}{n_{j}{ }^{*} N_{j}{ }^{*}(\text { AADT/15,000 })^{t}}$	from Table 12-7
Major commercial	0	0.033	1.106	0.000	--
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	
Major residential	0	0.018	1.106	0.000	
Minor residential	0	0.003	1.106	0.000	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.000	1.39

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Initial $\mathrm{N}_{\text {brdwy }}$	Proportion of total crashes ($\mathrm{f}_{\mathrm{dwy}}$)	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {brdwy }} \\ \hline \end{gathered}$	Combined CMFs	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {brdwy }}$
	(5) TOTAL from Worksheet 1 G	from Table 12-7	(2) TOTAL * (3)	(6) from Worksheet 1B		$(4)^{*}(5)^{*}(6)$
Total	0.000	1.000	0.000	1.00	1.00	0.000
Fatal and injury (FI)	--	0.284	0.000	1.00	1.00	0.000
Property damage only (PDO)	--	0.716	0.000	1.00	1.00	0.000

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{N}_{\text {br }}$	$\mathrm{f}_{\text {pedr }}$		Predicted $\mathrm{N}_{\text {podr }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	from Table $12-8$	factor, C_{r}	(5) ${ }^{*}(6)^{*}(7)$
Total	822.551	96.895	0.000	919.446	0.019	1.00	17.469
Fatal and injury (FI)	--	--	--	--	--	1.00	17.469

	Worksheet 1J -- Vehicle-Bicycle Collisions for Urban and Suburban Roadway ${ }^{\text {S }}$						
			(4)	((6)	Calibration factor, C_{r}	Preded
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{Nbr}^{\text {b }}$	$\mathrm{f}_{\text {biker }}$		Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1 E	(7) from Worksheet 1H	(2) $+(3)+(4)$	from Table $12-9$		$(5)^{*}(6)^{*}(7)$
Total	822.551	96.895	0.000	919.446	0.005	1.00	4.597
Fatal and injury (FI)	--	--	--	--	--	1.00	4.597

(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1I and 1J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1 H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 l and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	182.789	399.088	581.877
Head-on collisions (from Worksheet 1D)	4.394	4.220	8.614
Angle collisions (from Worksheet 1D)	8.788	21.703	30.491
Sideswipe, same direction (from Worksheet 1D)	10.985	134.436	145.421
Sideswipe, opposite direction (from Worksheet 1D)	2.197	0.603	2.800
Driveway-related collisions (from Worksheet 1H)	0.000	0.000	0.000
Other multiple-vehicle collision (from Worksheet 1D)	10.546	42.802	53.348
Subtotal	219.699	602.852	822.551
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.018	4.940	4.959
Collision with fixed object (from Worksheet 1F)	9.241	63.751	72.991
Collision with other object (from Worksheet 1F)	0.517	1.255	1.772
Other single-vehicle collision (from Worksheet 1F)	8.705	8.469	17.173
Collision with pedestrian (from Worksheet 11)	17.469	0.000	17.469
Collision with bicycle (from Worksheet 1J)	4.597	0.000	4.597
Subtotal	40.548	78.414	118.962
Total	260.247	681.266	941.513

(1)	(2)	(3)	(4)
Crash Severity Level	Predicted average crash frequency, $\mathrm{N}_{\text {predicted rs }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1 K		(2) / (3)
Total	941.5	104.00	9.1
Fatal and injury (FI)	260.2	104.00	2.5
Property damage only (PDO)	681.3	104.00	6.6

(1)	(2)		Overdispersion Parameter, \mathbf{k}	(4)	(5)		(7)CombinedCMFs(6) fromW	(8)CalibrationFactor, Cr	(9) Predicted $\mathbf{N}_{\text {brmv }}$ $(6)^{*}(7)^{*}(8)$
Crash Severity Level	SPF Coefficients			$\frac{\text { Initial } \mathrm{N}_{\mathrm{brmv}}}{\text { from Equation 12-10 }}$	Proportion of Total Crashes				
	from	12-3	from Table 12-3						
Total	-12.34	1.36	1.32	320.451	1.000	320.451	1.00	1.00	320.451
Fatal and Injury (FI)	-12.76	1.28	1.31	95.359	$\frac{(4)_{\left.\mathrm{F} / /(4)_{\mathrm{F}}+(4)_{\mathrm{PDO}}\right)}^{0.281}}{}$	90.008	1.00	1.00	90.008
Property Damage Only (PDO)	-12.81	1.38	1.34	244.142	$\frac{(5)_{\text {TOTAL }}-(5)_{\text {FI }}}{0.719}$	230.443	1.00	1.00	230.443

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(FI)	Predicted \mathbf{N} brmv(FI$)$ (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brmv (PDO) (crashes/year)	Predicted $\mathbf{N}_{\text {brmu (total) }}$ (crashes/year)
	from Table 12-4	(9)ıf from Worksheet 1 C	from Table 12-4	(9)poo from Worksheet 1C	(9)total from Worksheet 1C
Total	1.000	90.008	1.000	230.443	320.451
		$(2)^{*}(3){ }_{\text {F1 }}$		(4)* ${ }^{*}()_{\text {PDo }}$	(3)+(5)
Rear-end collision	0.832	74.887	0.662	152.553	227.440
Head-on collision	0.020	1.800	0.007	1.613	3.413
Angle collision	0.040	3.600	0.036	8.296	11.896
Sideswipe, same direction	0.050	4.500	0.223	51.389	55.889
Sideswipe, opposite direction	0.010	0.900	0.001	0.230	1.131
Other multiple-vehicle collision	0.048	4.320	0.071	16.361	20.682

Crash Severity Level	SPF Coefficients		Overdispersi		Proportion of Total Crashes	Adjusted	Combin	Calibration Factor, Cr	Predicted
			Parameter, \mathbf{k}	Initial $\mathrm{N}_{\text {brsv }}$		$\mathrm{N}_{\text {brsv }}$	CMFs		$\mathrm{N}_{\text {brsv }}$
	from Table 12-5		from Table 12-5	from Equation 12-13		(4) ${ }_{\text {Total }}{ }^{*}$ (5)	(6) from Worksheet 1B		(6)**(7)* 8)
Total	-5.05	0.47	0.86	69.955	1.000	69.955	1.00	1.00	69.955
Fatal and Injury (FI)	-8.71	0.66	0.28	11.811	$\frac{(4)_{F F} /\left((4)_{F_{1}+}(4)_{\mathrm{Poo}}\right)}{0.169}$	11.841	1.00	1.00	11.841
Property Damage Only (PDO)	-5.04	0.45	1.06	57.965	$\frac{(5)_{\text {TOTAL }}-(5)_{\mathrm{FI}}}{0.831}$	58.114	1.00	1.00	58.114

(1)	(2)	(3)	(4)	(5)	(6)
Collision Type	Proportion of Collision Type(fI)	Predicted $\mathbf{N}_{\text {brsv (FI) }}$ (crashes/year)	Proportion of Collision Type (PDO)	Predicted \mathbf{N} brsv (PDO) (crashes/year)	Predicted $\mathrm{N}_{\text {bisv (total) }}$ (crashes/year)
	from Table 12-6	(9)ff from Worksheet 1E	from Table 12-6	(9)poo from Worksheet	(9)Total from Worksheet 1E
Total	1.000	11.841	1.000	58.114	69.955
		$(2)^{*}(3)$ F1		(4)**(5) ${ }_{\text {PDo }}$	(3)+(5)
Collision with animal	0.001	0.012	0.063	3.661	3.673
Collision with fixed object	0.500	5.921	0.813	47.246	53.167
Collision with other object	0.028	0.332	0.016	0.930	1.261
Other single-vehicle collision	0.471	5.577	0.108	6.276	11.854

(1)	(2)	(3)	(4)	(5)	(6)
	Number of driveways,	Crashes per driveway per year, N_{j}	Coefficient for traffic adjustment, t	Initial $\mathrm{N}_{\text {brdwy }}$	Overdispersion parameter, \mathbf{k}
Driveway Type		from Table 12-7	from Table 12-7	$\frac{\text { Equation } 12-16}{n_{j}{ }^{*} N_{j}{ }^{*}(\text { AADT } / 15,000)^{1}}$	from Table 12-7
Major commercial	0	0.033	1.106	0.000	
Minor commercial	0	0.011	1.106	0.000	
Major industrial/institutional	0	0.036	1.106	0.000	
Minor industrial/institutional	0	0.005	1.106	0.000	--
Major residential	0	0.018	1.106	0.000	
Minor residential	0	0.003	1.106	0.000	
Other	0	0.005	1.106	0.000	
Total	--	--	--	0.000	1.39

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity Level	Initial $\mathrm{N}_{\text {brdwy }}$	$\begin{aligned} & \text { Proportion of total } \\ & \text { crashes }\left(\mathrm{f}_{\mathrm{dwy}}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Adjusted } \\ \mathbf{N}_{\text {brdwy }} \\ \hline \end{gathered}$	Combined CMFs	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {brdwy }}$
	$\overline{(5)_{\text {TOTAL }}}$ from Worksheet 1 G	from Table 12-7	(2) TOTAL * * (3)	(6) from Worksheet 1B		$(4)^{\star}(5)^{*}(6)$
Total	0.000	1.000	0.000	1.00	1.00	0.000
Fatal and injury (FI)	--	0.284	0.000	1.00	1.00	0.000
Property damage only (PDO)	--	0.716	0.000	1.00	1.00	0.000

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	dicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	dicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{N}_{\text {br }}$	f_{p}		Predicted $\mathrm{N}_{\text {pedr }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2)+(3)+(4)	$\begin{gathered} \text { from Table } \\ 12-8 \end{gathered}$	factor, C_{r}	$(5)^{*}(6)^{*}(7)$
Total	320.451	69.955	0.000	390.406	0.019	1.00	7.418
Fatal and injury (FI)	--	--	--	--	--	1.00	7.418

Worksheet 1J -- Vehicle-Bicycle Collisions for Urban and Suburban Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Predicted $\mathrm{N}_{\text {brmv }}$	Predicted $\mathrm{N}_{\text {brsv }}$	Predicted $\mathrm{N}_{\text {brdwy }}$	Predicted $\mathrm{Nbr}_{\text {br }}$	$\mathrm{f}_{\text {biker }}$	Calibration factor, C_{r}	Predicted $\mathrm{N}_{\text {biker }}$
Crash Severity Level	(9) from Worksheet 1C	(9) from Worksheet 1E	(7) from Worksheet 1H	(2) $+(3)+(4)$	$\begin{gathered} \hline \text { from Table } \\ 12-9 \\ \hline \end{gathered}$		$(5)^{*}(6)^{*}(7)$
Total	320.451	69.955	0.000	390.406	0.005	1.00	1.952
Fatal and injury (FI)	--	--	--	--	--	1.00	1.952

(1)	(2)	(3)	(4)
	Fatal and injury (FI)	Property damage only (PDO)	Total
Collision type	(3) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J	(5) from Worksheet 1D and 1F; and (7) from Worksheet 1H	(6) from Worksheet 1D and 1F; (7) from Worksheet 1 H ; and (8) from Worksheet 1 I and 1 J
MULTIPLE-VEHICLE			
Rear-end collisions (from Worksheet 1D)	74.887	152.553	227.440
Head-on collisions (from Worksheet 1D)	1.800	1.613	3.413
Angle collisions (from Worksheet 1D)	3.600	8.296	11.896
Sideswipe, same direction (from Worksheet 1D)	4.500	51.389	55.889
Sideswipe, opposite direction (from Worksheet 1D)	0.900	0.230	1.131
Driveway-related collisions (from Worksheet 1H)	0.000	0.000	0.000
Other multiple-vehicle collision (from Worksheet 1D)	4.320	16.361	20.682
Subtotal	90.008	230.443	320.451
SINGLE-VEHICLE			
Collision with animal (from Worksheet 1F)	0.012	3.661	3.673
Collision with fixed object (from Worksheet 1F)	5.921	47.246	53.167
Collision with other object (from Worksheet 1F)	0.332	0.930	1.261
Other single-vehicle collision (from Worksheet 1F)	5.577	6.276	11.854
Collision with pedestrian (from Worksheet 11)	7.418	0.000	7.418
Collision with bicycle (from Worksheet 1J)	1.952	0.000	1.952
Subtotal	21.211	58.114	79.325
Total	111.220	288.556	399.776

(1)	(2)	(3)	(4)
Crash Severity Level	Predicted average crash frequency, $\mathbf{N}_{\text {predicted is }}$ (crashes/year)	Roadway segment length, L (mi)	Crash rate (crashes/mi/year)
	(Total) from Worksheet 1K		(2)/(3)
Total	399.8	104.00	3.8
Fatal and injury (FI)	111.2	104.00	1.1
Property damage only (PDO)	288.6	104.00	2.8

Worksheet 1C (a) -- Roadway Segment Crashes for Rural Multilane Divided Roadway Segments								
(1)		(2)		(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients			N spf rd	Overdispersion Parameter, k	Combined CMFs	Calibration Factor, Cr	Predicted average crashfrequency, $\mathrm{N}_{\text {predicted } \mathrm{s} \text { (d) }}$
		Table				(6) from Worksheet 1B (a)		
	a	b	c	from Equation 11-9	from Equation 11-10			$(3)^{*}(5)^{*}(6)$
Total	-9.025	1.049	1.549	254.062	0.003	0.94	1.00	238.819
Fatal and Injury (FI)	-8.837	0.958	1.687	124.841	0.003	0.94	1.00	117.351
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}^{\text {a }}$)	-8.505	0.874	1.740	75.915	0.003	0.94	1.00	71.361
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\begin{aligned} & (7)_{\text {Total }}-(7)_{\text {FII }} \end{aligned}$

$\overline{\text { NOTE: }}$ a Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1D (a) -- Crashes by Severity Level and Collision Type for Rural Multilane Divided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted rs(d) (TOTAL) }}$ (crashes/year)	Proportion of Collision Type(FI)	$\mathbf{N}_{\text {predicted }} \mathrm{rs}(\mathrm{d})$ (FI) (crashes/year)	Proportion of Collision Type (Fl^{a})	N predicted r (FI^{a}) (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted rs(d) (PDO) }}$ (crashes/year)
	$\begin{gathered} \text { from Table } \\ 11-6 \end{gathered}$	(7)Total from Worksheet 1C (a)	$\begin{gathered} \text { from Table } 11- \\ 6 \end{gathered}$	(7)f: from Worksheet 1C (a)	$\begin{gathered} \hline \text { from Table } \\ 11-6 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { (7) } \text { Fl }^{\mathrm{a}} \text { from Worksheet } \\ \text { 1C (a) } \\ \hline \end{array}$	$\begin{gathered} \hline \text { from Table } \\ 11-6 \end{gathered}$	(7)poo from Worksheet 1C (a)
Total	1.000	238.819	1.000	117.351	1.000	71.361	1.000	121.468
		(2)* 3$)_{\text {Total }}$		(4) $\times(5)_{\text {F1 }}$		(6)* ${ }^{*}()_{\text {F\| }}{ }^{\text {a }}$		(8)** 9$)_{\text {PDO }}$
Head-on collision	0.006	1.433	0.013	1.526	0.018	1.284	0.002	0.243
Sideswipe collision	0.043	10.269	0.027	3.168	0.022	1.570	0.053	6.438
Rear-end collision	0.116	27.703	0.163	19.128	0.114	8.135	0.088	10.689
Angle collision	0.043	10.269	0.048	5.633	0.045	3.211	0.041	4.980
Single-vehicle collision	0.768	183.413	0.727	85.314	0.778	55.518	0.792	96.203
Other collision	0.024	5.732	0.022	2.582	0.023	1.641	0.024	2.915

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1E -- Summary Results for Rural Multilane Roadway Segments			
(1)	(2)	(3)	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	238.8	67.0	3.6
Fatal and Injury (FI)	117.4	67.0	1.8
Fatal and Injury ${ }^{\text {a }}$ ($\left.F\right\|^{\text {a }}$)	71.4	67.0	1.1
Property Damage Only (PDO)	121.5	67.0	1.8

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition.

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Multilane Highway Intersections								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Type(total)	\mathbf{N} predicted int (TOTAL) (crashes/year)	$\begin{array}{\|c} \hline \text { Proportion of } \\ \text { Collision } \\ \text { Type }(\text { FI) } \\ \hline \end{array}$	$\mathrm{N}_{\text {predicted int (Fl) }}$ (crashes/year)	Proportion of Collision Type ($\mathrm{Fl}^{\text {a }}$)	N predicted int (Fl^{a}) (crashes/vear)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted int (PDO) }}$ (crashes/year)
	from Table 11-9	(7)total from Worksheet 2C	$\begin{gathered} \hline \text { from Table } \\ 11-9 \\ \hline \end{gathered}$	(7) =1 from Worksheet 2C	from Table 11-9	(7) FI^{a} from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	1.000	2.574	1.000	1.212	1.000	0.715	1.000	1.361
		(2)*(3) Total		(4) $\times(5)_{\text {F1 }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)_{\text {PDO }}$
Head-on collision	0.016	0.041	0.018	0.022	0.023	0.016	0.015	0.020
Sideswipe collision	0.107	0.275	0.042	0.051	0.040	0.029	0.156	0.212
Rear-end collision	0.228	0.587	0.213	0.258	0.108	0.077	0.240	0.327
Angle collision	0.395	1.017	0.534	0.647	0.571	0.408	0.292	0.397
Single-vehicle collision	0.202	0.520	0.148	0.179	0.199	0.142	0.243	0.331
Other collision	0.052	0.134	0.045	0.055	0.059	0.042	0.054	0.074

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)			Observed crashes,	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\text {p/comb }}$
	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & \text { (TOTAL) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & (\mathrm{FI}) \end{aligned}$	$\mathrm{N}_{\text {predicted }}$ (PDO)	$\begin{gathered} N_{\text {observed }} \\ \text { (crashes/year) } \end{gathered}$		$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Equation A-9 } \\ & \text { sart((6)*(2)) } \end{aligned}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \text { A-11 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-12 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_Divided_1	238.819	117.351	121.468	--	0.003	180.859	0.870	--	--	--	--	--
Segment_Divided_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	238.819	117.351	121.468									
(INTERSECTIONS												
Intersection_1	115.814	54.556	61.258	--	0.494	6625.920	7.564	--	--	--	--	--
Intersection_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersesection Totals:	115.814	54.556	61.258									
COMBINED (sum of column)	354.632	171.906	182.726	0	--	\#REF!						

General Information				Location Information					
Analyst Agency or Company Date Performed		MWD		Roadway	US 60 (One-Directional)				
			Смт	Roadway Section	US 65 to US 63				
		04/07/20		Jurisdiction Analysis Year					
Input Data				Base Conditions	Site Conditions				
Roadway type (divided / undivided)				Undivided	Divided				
Length of segment, L (mi)				--	67				
AADT (veh/day) AADT $_{\text {max }}=89,300$ (veh/day)				--	39,370				
				12	12				
Shoulder type - right shoulder type for divided				8					
				Paved	Paved				
Median width ((ft) - for divided only				30	90				
				1:7 or flatter	Not Applicable				
Lighting (present/not present) Auto speed enforcement (present/not present)				Not Present	Not Present				
				Not Present	Not				
Calibration Factor, Cr				1.00	1.00				
CMF for Lane Width	CMF for Right Shoulde	Width	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF			
CMF 1rd	CMF 2rd		CMF 3rd	CMF 4rd	CMF 5rd	CMF comb			
from Equation 11-16	from Table 11-17		from Table 11-18	from Equation 11-17	from Section 11.7.2	(1) ${ }^{*}(2)^{*}(3)^{*}(4)^{*}(5)$			
1.00	1.00		0.94	1.00	1.00	0.94			

Crash Severity Level		(2)		(3)	(4)	(5)	(6)	
	SPF Coefficients			N spf rd	Overdispersion Parameter, \mathbf{k}	Combined CMFs	Calibration Factor, Cr	Predicted average crash frequency, $\mathbf{N}_{\text {predicted } \mathbf{r s}(d)}$
		Table				(6) from Worksheet 1B (a)		
	a	b	c	from Equation 11-9	from Equation 11-10			$(3)^{*}(5)^{*}(6)$
Total	-9.025	1.049	1.549	533.207	0.003	0.94	1.00	501.214
Fatal and Injury (FI)	-8.837	0.958	1.687	245.687	0.003	0.94	1.00	230.946
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{Fl}^{\text {a }}$)	-8.505	0.874	1.740	140.791	0.003	0.94	1.00	132.344
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TOTAL }}-(7)_{\text {FI }}}{270.268}$

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Tуре(tтоан)	$\mathrm{N}_{\text {predicted rs(d) (TOTAL) }}$ (crashes/year)	Proportion of Collision Type(FI)	\mathbf{N} predicted rss(d) (FI) (crashes/year)	Proportion of Collision Type ($\mathrm{Fl}^{\text {a }}$)	N predicted $\mathrm{rs}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted rs(d) (PDO) }}$ (crashes/year)
	$\begin{array}{\|c} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	(7)total from Worksheet 1C (a)	$\begin{array}{\|c} \hline \text { from Table 11- } \\ 6 \end{array}$	(7)fi from Worksheet 1C (a)	$\begin{gathered} \text { from Table } \\ 11-6 \\ \hline \end{gathered}$	$\begin{gathered} \text { (7) FI }{ }^{\text {a }} \text { from Worksheet } \\ 1 \mathrm{C} \text { (a) } \end{gathered}$	$\begin{gathered} \hline \text { from Table } \\ 11-6 \\ \hline \end{gathered}$	(7)poo from Worksheet 1C (a)
Total	1.000	501.214	1.000	230.946	1.000	132.344	1.000	270.268
		(2)* 3$)_{\text {Total }}$		(4)×(5) FI		(6)* ${ }^{*}()_{\text {F1 }}{ }^{\text {a }}$		(8)** 9$)_{\text {PDO }}$
Head-on collision	0.006	3.007	0.013	3.002	0.018	2.382	0.002	0.541
Sideswipe collision	0.043	21.552	0.027	6.236	0.022	2.912	0.053	14.324
Rear-end collision	0.116	58.141	0.163	37.644	0.114	15.087	0.088	23.784
Angle collision	0.043	21.552	0.048	11.085	0.045	5.955	0.041	11.081
Single-vehicle collision	0.768	384.933	0.727	167.898	0.778	102.963	0.792	214.052
Other collision	0.024	12.029	0.022	5.081	0.023	3.044	0.024	6.486

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	oadway Segment	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	501.2	67.0	7.5
Fatal and Injury (FI)	230.9	67.0	3.4
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{Fl}^{\text {a }}$)	132.3	67.0	2.0
Property Damage Only (PDO)	270.3	67.0	4.0

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

General Information				Location Information	
Analyst Agency or Company Date Performed	$\begin{gathered} \text { MWD } \\ \text { CMT } \\ 04 / 07 / 20 \end{gathered}$			Roadway Intersection Jurisdiction Analysis Year	US 60 (One-Directional) Standard Intersection MoDOT 2020
Input Data				Base Conditions	Site Conditions 2020
Intersection type (3ST, 4ST, 4SG)				--	4ST
$\mathrm{AADT}_{\text {major }}$ (veh/day)	AADT $_{\text {max }}=$	78,300	(veh/day)	--	39,370
$\mathrm{AADT}_{\text {minor }}$ (veh/day)	AADT $_{\text {max }}=$	7,400	(veh/day)	--	800
Intersection skew angle (degrees)				0	10
Number of non-STOP-controlled approaches with left-turn lanes (0, 1, 2)				0	
Number of non-STOP-controlled approaches with right-turn lanes ($0,1,2,3$, or 4)				0	0
Intersection lighting (present/not present)				Not Present	Not Present
Calibration Factor, C_{i}				1.00	1.00

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Multilane Highway Intersections								
Collision Type	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Proportion of Collision Type(Total)	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(F)	$\mathbf{N}_{\text {predicted int (F) }}$ (crashes/year)	Proportion of Collision Type ($\mathrm{Fl}^{\text {a }}$)	N predicted int (Fl^{a}) (crashes/vear)	Proportion of Collision Type (PDO)	$\mathrm{N}_{\text {predicted int }}$ (PDo) ((rashes/year)
	from Table 11-9	(7)Total from Worksheet 2C	$\begin{gathered} \text { from Table } \\ 11-9 \end{gathered}$	(7)fl from Worksheet 2C	from Table 11-9	(7) $\mathrm{Fl}^{\text {a }}$ from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	1.000	4.686	1.000	2.271	1.000	1.284	1.000	2.415
		(2)* 3$)_{\text {Total }}$		(4) $\times(5)$ ¢ 1		(6) ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)_{\text {PDO }}$
Head-on collision	0.016	0.075	0.018	0.041	0.023	0.030	0.015	0.036
Sideswipe collision	0.107	0.501	0.042	0.095	0.040	0.051	0.156	0.377
Rear-end collision	0.228	1.068	0.213	0.484	0.108	0.139	0.240	0.580
Angle collision	0.395	1.851	0.534	1.213	0.571	0.733	0.292	0.705
Single-vehicle collision	0.202	0.947	0.148	0.336	0.199	0.255	0.243	0.587
Other collision	0.052	0.244	0.045	0.102	0.059	0.076	0.054	0.130

NOTE: ${ }^{a}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method													
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
Site type	Predicted average crash frequency (crashes/year)			Observedcrashes,$N_{\text {observed }}$(crashes/year)	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\text {plcomb }}$	
	$\begin{aligned} & N_{\text {predicted }} \\ & (T O T A L) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & (\mathrm{FI}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & \text { (PDO) } \\ & \hline \end{aligned}$			$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation A-9 } \\ \text { sqrt((6)* }(2)) \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$	
ROADWAY SEGMENTS													
Segment_Divided_1	501.214	230.946	270.268		---	0.003	796.618	1.261	--	--	--	--	--
Segment_Divided_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Segment_Divided_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Segment Divided_4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Segment_Divided_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Segment_Divided_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Segment_Divided_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Segment_Divided_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Segment Totals:	501.214	230.946	270.268										
INTERSECTIONS													
Intersection_1	210.875	102.183	108.691	---	0.494	21967.267	10.206	--	--	--	--	--	
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Intersection 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Intersection_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Intersection 6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--	
Intersesection Totals:	210.875	102.183	108.691										
COMBINED (sum of column)	712.089	333.130	378.959	0	--	\#REF!							

Worksheet 1A -- General Information and Input Data for Rural Multilane Roadway Segments

(1)	(2)	(3)	(4)	(5)	Worksheet 1B (a) -- Crash Modification Factors for Rural Multilane Divided Roadway Segments
CMF for Lane Width	CMF for Right Shoulder Width	CMF for Median Width	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF
CMF 1rd	CMF 2rd	CMF 3rd	CMF 4rd	CMF 5rd	CMF comb
from Equation 11-16	from Table 11-17	from Table 11-18	from Equation 11-17	from Section 11.7.2	$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)$
1.00	1.00	0.94	1.00	1.00	0.94

Worksheet 1C (a) -- Roadway Segment Crashes for Rural Multilane Divided Roadway Segments								
(1)		(2)		(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients			N spf rd	Overdispersion Parameter, k	Combined CMFs	Calibration Factor, Cr	Predicted average crashfrequency, $\mathrm{N}_{\text {predicted } \mathrm{s}(\text { d) }}$
		Table				(6) from Worksheet 1B (a)		
	a	b	c	from Equation 11-9	from Equation 11-10			$(3)^{*}(5)^{*}(6)$
Total	-9.025	1.049	1.549	732.951	0.003	0.94	1.00	688.974
Fatal and Injury (FI)	-8.837	0.958	1.687	328.530	0.003	0.94	1.00	308.818
Fatal and Injury $\left.{ }^{\text {a }}(\mathrm{FI})^{2}\right)$	-8.505	0.874	1.740	183.528	0.003	0.94	1.00	172.516
Property Damage Only (PDO)	--	--	--	--	--	--	--	(7) ${ }_{\text {Total }}-(7)_{\text {FI }}$
								380.155

$\overline{\text { NOTE: }}{ }^{\text {a }}$ Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible iniury) are not included.

Worksheet 1D (a) -- Crashes by Severity Level and Collision Type for Rural Multilane Divided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Tуре(тотац)	$\mathrm{N}_{\text {predicted }}$ rs(d) (Total) (crashes/year)	Proportion of Collision Type(FI)	$\mathbf{N}_{\text {predicted }} \mathrm{r}(\mathrm{d})$ (FI) (crashes/year)	Proportion of Collision Type ($\mathrm{Fl}^{\text {a }}$)	N predicted rs (Fl^{a}) (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted rs }(d) \text { (PDO) }}$ (crashes/year)
	$\begin{array}{\|c} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	(7)Total from Worksheet 1C (a)	$\begin{gathered} \text { from Table 11- } \\ 6 \end{gathered}$	$\begin{gathered} \text { (7)ff from Worksheet } \\ \text { 1C (a) } \end{gathered}$	$\begin{gathered} \hline \text { from Table } \\ 11-6 \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline(7)_{\text {F1 }}{ }^{\text {a from Worksheet }} \\ 1 \mathrm{C} \text { (a) } \end{array}$	$\begin{array}{\|c} \hline \text { from Table } \\ 11-6 \\ \hline \end{array}$	(7)poo from Worksheet 1C (a)
Total	1.000	688.974	1.000	308.818	1.000	172.516	1.000	380.155
		(2)* 3$)_{\text {Total }}$		(4) $\times(5)_{\text {F1 }}$		(6)* ${ }^{*}(7)_{\text {Fl }}{ }^{\text {a }}$		(8)** 9$)_{\text {poo }}$
Head-on collision	0.006	4.134	0.013	4.015	0.018	3.105	0.002	0.760
Sideswipe collision	0.043	29.626	0.027	8.338	0.022	3.795	0.053	20.148
Rear-end collision	0.116	79.921	0.163	50.337	0.114	19.667	0.088	33.454
Angle collision	0.043	29.626	0.048	14.823	0.045	7.763	0.041	15.586
Single-vehicle collision	0.768	529.132	0.727	224.511	0.778	134.218	0.792	301.083
Other collision	0.024	16.535	0.022	6.794	0.023	3.968	0.024	9.124

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1E -- Summary Results for Rural Multilane Roadway Segments			
(1)	(2)	(3)	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	689.0	67.0	10.3
Fatal and Injury (FI)	308.8	67.0	4.6
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{\text {a }}\right.$)	172.5	67.0	2.6
Property Damage Only (PDO)	380.2	67.0	5.7

NOTE: ${ }^{\text {a }}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 2D --C Crashes by Severity Level and Collision Type for Rural Multilane Highway Intersections								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted int (TOTAL) }}$ (crashes/year)	Proportion of Collision Type(FI)	$\mathrm{N}_{\text {predicted int (}}^{\text {Fl }}$ ((crashes/year)	Proportion of Collision Type (Fl^{a})	N predicted int (Fl^{a}) (crashes/vear)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted }}$ int (PDo) ((crashes/year)
	from Table 11-9	(7)Total from Worksheet 2C	$\begin{aligned} & \text { from Table } \\ & 11-9 \end{aligned}$	(7)fi from Worksheet 2C	from Table 11-9	(7) $\mathrm{Fl}^{\text {a }}$ from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	1.000	6.061	1.000	2.973	1.000	1.650	1.000	3.088
		(2)* 3$)_{\text {Total }}$		(4) $\times(5)_{\text {F1 }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)_{\text {PDO }}$
Head-on collision	0.016	0.097	0.018	0.054	0.023	0.038	0.015	0.046
Sideswipe collision	0.107	0.648	0.042	0.125	0.040	0.066	0.156	0.482
Rear-end collision	0.228	1.382	0.213	0.633	0.108	0.178	0.240	0.741
Angle collision	0.395	2.394	0.534	1.587	0.571	0.942	0.292	0.902
Single-vehicle collision	0.202	1.224	0.148	0.440	0.199	0.328	0.243	0.750
Other collision	0.052	0.315	0.045	0.134	0.059	0.097	0.054	0.167

$\mathrm{NOTE:}^{a}$ Using the KABCO scale, these include only KAB crashes. Crashes with severity level C (possible injury) are not include

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method												
(1)	(2)	(3)	(4)	(5) crasved $N_{\text {obseresed }}$ (crashes/year)		(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)				Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\mathrm{p} / \text { comb }}$
	$\mathrm{N}_{\text {predicted }}$ (TOTAL)	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & \text { (PDO) } \end{aligned}$			$\begin{gathered} \hline \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation A-9 } \\ \text { sqrt((6)*(2)) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \mathrm{A} . \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \mathrm{A} \\ 11 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Equation } \mathrm{A} \\ 12 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Equation } \mathrm{A} \\ 13 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Equation } \mathrm{A} \\ 14 \\ \hline \end{array}$
ROADWAY SEGMENTS												
Segment_Divided_1	688.974	308.818	380.155	---	0.003	1,505.249	1.478	--	--	--	--	--
Segment_Divided 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Divided 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Divided 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Divided 7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_Divided_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	688.974	308.818	380.155									
INTERSECTIONS												
Intersection_1	272.726	133.768	138.958	--	0.494	36743.555	11.607	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersesection Totals:	272.726	133.768	138.958									
COMBINED (sum of column)	961.700	442.586	519.114	0	--	\#REF!						

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for Lane Width	CMF for Shoulder Width and Type	CMF for Horizontal Curves	CMF for Superelevation	CMF for Grades	CMF for Driveway Density	CMF for Centerline Rumble Strips	CMF for Passing Lanes	CMF for Two-Way Left-Turn Lane	CMF for Roadside Design	CMF for Lighting	CMF for Automated Speed Enforcemen	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb
from Equation 10-11	from Equation $10-12$	$\begin{gathered} \text { from Equation } \\ 10-13 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { from Equations } \\ 10-14,10-15, \\ \text { or } 10-16 \end{array}$	$\begin{gathered} \hline \text { from Table } \\ 10-11 \end{gathered}$	from Equation 10- 17	from Section 10.7.1	$\begin{gathered} \hline \text { from } \\ \text { Section } \\ \text { 10.7.1 } \end{gathered}$	from Equation $10-18 \& 10$ 19	from Equation 10 - 20	$\begin{array}{\|c\|} \hline \text { from Equation } \\ 10-21 \end{array}$	from Section 10.7.1	$\begin{gathered} \hline(1) \times(2) \mathrm{x} \\ \ldots \\ \mathrm{x}(11) \mathrm{x}(12) \end{gathered}$
1.00	1.17	1.07	1.11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.385

Worksheet 1C -- Roadway Segment Crashes for Rural Two-Lane Two-Way Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	N spf rs	Overdispersion Parameter, \qquad	Crash Severity Distribution	N spf rs by Severity Distribution	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, Cr	Predicted average crash frequency,
	from Equation 10-6	from Equation 10-7	from Table 10-3 (proportion)	(2)TOTAL \times (4)	(13) from Worksheet 1B		(5) $\mathrm{x}(6) \times(7)$
Total	63.024	0.00	1.000	63.024	1.38	1.00	87.266
Fatal and Injury (FI)	--	--	0.321	20.231	1.38	1.00	28.012
Property Damage Only (PDO)	--	--	0.679	42.793	1.38	1.00	59.253

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Type(total)	\mathbf{N} predicted rs (TOTAL) (crashes/year)	Proportion of Collision Type(FI)	$\mathbf{N}_{\text {predicted } I s \text { (}}$ (II) (crashes/year)	Proportion of Collision Type(PDO)	$\mathbf{N}_{\text {predicted }}$ s (PDO) (crashes/year)
	from Table $10-4$	(8)total from Worksheet 1C	from Table 10-4	(8)f1 from Worksheet 1C	from Table 10-4	(8)pDo from Worksheet 1C
Total	1.000	87.266	1.000	28.012	1.000	59.253
		(2) x (3) TOTAL		(4) $\mathrm{x}(5) \mathrm{FI}$		(6)x(7)PDo
SINGLE-VEHICLE						
Collision with animal	0.121	10.559	0.038	1.064	0.184	10.903
Collision with bicycle	0.002	0.175	0.004	0.112	0.001	0.059
Collision with pedestrian	0.003	0.262	0.007	0.196	0.001	0.059
Overturned	0.025	2.182	0.037	1.036	0.015	0.889
Ran off road	0.521	45.465	0.545	15.267	0.505	29.923
Other single-vehicle collision	0.021	1.833	0.007	0.196	0.029	1.718
Total single-vehicle crashes	0.693	60.475	0.638	17.872	0.735	43.551
MULTIPLE-VEHICLE						
Angle collision	0.085	7.418	0.100	2.801	0.072	4.266
Head-on collision	0.016	1.396	0.034	0.952	0.003	0.178
Rear-end collision	0.142	12.392	0.164	4.594	0.122	7.229
Sideswipe collision	0.037	3.229	0.038	1.064	0.038	2.252
Other multiple-vehicle collision	0.027	2.356	0.026	0.728	0.030	1.778
Total multiple-vehicle crashes	0.307	26.791	0.362	10.140	0.265	15.702

(1)	(2)	(3)	(4)	(5)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes $/ \mathrm{mi} /$ year)
	(4) from Worksheet 1C	(8) from Worksheet 1C		(3)/(4)
Total	1.000	87.3	68	1.3
Fatal and Injury (FI)	0.321	28.0	68	0.4
Property Damage Only (PDO)	0.679	59.3	68	0.9

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Two-Lane Two-Way Road Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Typeitotal	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(f)	N predicted int (F) (crashes/year)	Proportion of Collision Type(PDO)	N predicted int (PDo) (crashes/year)
	$\begin{gathered} \text { from Table } \\ 10-6 \end{gathered}$	(8)total from Worksheet 2 C	from Table 10-6	(8)FI from Worksheet 2 C	from Table 10-6	(8)poo from Worksheet 2C
Total	1.000	0.325	1.000	0.135	1.000	0.190
		(2) \times (3) TOTAL		(4) \times (5) F		(6) \times (7) PDo
SINGLE-VEHICLE						
Collision with animal	0.019	0.006	0.008	0.001	0.026	0.005
Collision with bicycle	0.001	0.000	0.001	0.000	0.001	0.000
Collision with pedestrian	0.001	0.000	0.001	0.000	0.001	0.000
Overturned	0.013	0.004	0.022	0.003	0.007	0.001
Ran off road	0.244	0.079	0.240	0.032	0.247	0.047
Other single-vehicle collision	0.016	0.005	0.011	0.001	0.020	0.004
Total single-vehicle crashes	0.294	0.096	0.283	0.038	0.302	0.057
M MULTIPLE-VEHICLE						
Angle collision	0.237	0.077	0.275	0.037	0.210	0.040
Head-on collision	0.052	0.017	0.081	0.011	0.032	0.006
Rear-end collision	0.278	0.090	0.260	0.035	0.292	0.056
Sideswipe collision	0.097	0.032	0.051	0.007	0.131	0.025
Other multiple-vehicle collision	0.042	0.014	0.050	0.007	0.033	0.006
Total multiple-vehicle crashes	0.706	0.230	0.717	0.097	0.698	0.133

Worksheet 2E -- Summary Results for Rural Two-Lane Two-Way Road Intersections		
(1)	(2)	(3)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes / year)
	(4) from Worksheet 2C	(8) from Worksheet 2C
Total	1.000	0.3
Fatal and Injury (FI)	0.415	0.1
Property Damage Only (PDO)	0.585	0.2

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)			$\begin{aligned} & \hline \text { Observed } \\ & \text { crashes, } \\ & \mathrm{N}_{\text {observed }} \\ & \text { (crashes/year) } \\ & \hline \end{aligned}$	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\mathrm{p} / \text { comb }}$
	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & \text { (TOTAL) } \end{aligned}$	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & \text { (PDO) } \end{aligned}$			$\begin{gathered} \text { Equation A-8 } \\ (6)^{*}(2)^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation A-9 } \\ \text { sqrt((6)* }(2)) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-12 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_1	87.266	28.012	59.253	--	0.003	26.430	0.550	--	--	--	--	--
Segment_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_7	0.000	0.000	0.000	--	0.000	0.000	0.000					
Segment_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	87.266	28.012	59.253									
INTERSECTIONS												
Intersection_1	16.579	6.880	9.699	---	0.540	148.427	2.992	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection Totals:	16.579	6.880	9.699									
COMBINED	103.845	34.893	68.952	0	--	174.857	3.542	0.373	38.693	0.967	100.419	69.556

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for Lane Width	CMF for Shoulder Width and Type	CMF for Horizontal Curves	CMF for Superelevation	CMF for Grades	CMF for Driveway Density	CMF for Centerline Rumble Strips	CMF for Passing Lanes	CMF for Two-Way Left-Turn Lane	CMF for Roadside Design	CMF for Lighting	CMF for Automated Speed Enforcemen	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb
from Equation 10-11	$\begin{aligned} & \text { from Equation } \\ & 10-12 \end{aligned}$	from Equation 10-13	$\begin{array}{\|c\|} \hline \text { from Equations } \\ 10-14,10-15 \\ \text { or } 10-16 \end{array}$	$\begin{gathered} \text { from Table } \\ 10-11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { from } \\ \text { Equation } 10-17 \\ 17 \end{array}$	from Section 10.7.1	$\begin{array}{c\|} \hline \text { from } \\ \text { Section } \\ \text { 10.7.1 } \end{array}$	from Equation $10-18 \& 10-$ 19	from Equation 10 - 20	from Equation 10-21	$\left\lvert\, \begin{gathered} \text { from Section } \\ 10.7 .1 \end{gathered}\right.$	$\begin{array}{\|c} \hline(1) \times(2) x \\ \ldots \\ x(11) \times(12) \end{array}$
1.00	1.17	1.07	1.11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.385

Worksheet 1C -- Roadway Segment Crashes for Rural Two-Lane Two-Way Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	N spf rs	Overdispersion Parameter, k	Crash Severity Distribution	N spf rs by Severity Distribution	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, Cr	Predicted average crash frequency, \qquad
	from Equation 10-6	from Equation 10-7	from Table 10-3 (proportion)	(2)TOTAL \times (4)	(13) from Worksheet 1B		(5) $\mathrm{x}(6) \mathrm{x}(7)$
Total	323.387	0.00	1.000	323.387	1.38	1.00	447.774
Fatal and Injury (FI)	--	--	0.321	103.807	1.38	1.00	143.736
Property Damage Only (PDO)	--	--	0.679	219.579	1.38	1.00	304.039

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted rs }}$ (TOTAL) (crashes/year)	Proportion of Collision Type(fl)	$\mathbf{N}_{\text {predicted }}$ rs (FI) (crashes/year)	Proportion of Collision Type(PDO)	$\mathbf{N}_{\text {predicted }}$ ss (PDO) (crashes/year)
	$\begin{gathered} \text { from Table } \\ 10-4 \end{gathered}$	(8)total from Worksheet 1C	from Table 10-4	(8)f1 from Worksheet 1C	from Table 10-4	(8)poo from Worksheet 1C
Total	1.000	447.774	1.000	143.736	1.000	304.039
		(2) x (3) TOTAL		(4) $\mathrm{x}(5) \mathrm{FI}$		(6) x (7) PDo
SINGLE-VEHICLE						
Collision with animal	0.121	54.181	0.038	5.462	0.184	55.943
Collision with bicycle	0.002	0.896	0.004	0.575	0.001	0.304
Collision with pedestrian	0.003	1.343	0.007	1.006	0.001	0.304
Overturned	0.025	11.194	0.037	5.318	0.015	4.561
Ran off road	0.521	233.290	0.545	78.336	0.505	153.540
Other single-vehicle collision	0.021	9.403	0.007	1.006	0.029	8.817
Total single-vehicle crashes	0.693	310.308	0.638	91.703	0.735	223.469
MULTIPLE-VEHICLE						
Angle collision	0.085	38.061	0.100	14.374	0.072	21.891
Head-on collision	0.016	7.164	0.034	4.887	0.003	0.912
Rear-end collision	0.142	63.584	0.164	23.573	0.122	37.093
Sideswipe collision	0.037	16.568	0.038	5.462	0.038	11.553
Other multiple-vehicle collision	0.027	12.090	0.026	3.737	0.030	9.121
Total multiple-vehicle crashes	0.307	137.467	0.362	52.032	0.265	80.570

(1)	(2)	(3)	(4)	(5)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes $/ \mathrm{mi} /$ year)
	(4) from Worksheet 1C	(8) from Worksheet 1C		(3)/(4)
Total	1.000	447.8	68	6.6
Fatal and Injury (FI)	0.321	143.7	68	2.1
Property Damage Only (PDO)	0.679	304.0	68	4.5

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Two-Lane Two-Way Road Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Typentotal	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(f)	\mathbf{N} predicted int (F) ((crashes/year)	Proportion of Collision Type(PDO)	N predicted int (PDO) ((crashes/year)
	$\begin{gathered} \text { from Table } \\ 10-6 \end{gathered}$	(8)total from Worksheet 2 C	from Table 10-6	(8)FI from Worksheet 2 C	from Table 10-6	(8)poo from Worksheet 2C
Total	1.000	1.272	1.000	0.528	1.000	0.744
		(2) \times (3) TOTAL		(4) \times (5) F		(6) x (7) PDo
SINGLE-VEHICLE						
Collision with animal	0.019	0.024	0.008	0.004	0.026	0.019
Collision with bicycle	0.001	0.001	0.001	0.001	0.001	0.001
Collision with pedestrian	0.001	0.001	0.001	0.001	0.001	0.001
Overturned	0.013	0.017	0.022	0.012	0.007	0.005
Ran off road	0.244	0.310	0.240	0.127	0.247	0.184
Other single-vehicle collision	0.016	0.020	0.011	0.006	0.020	0.015
Total single-vehicle crashes	0.294	0.374	0.283	0.149	0.302	0.225
M MULTIPLE-VEHICLE						
Angle collision	0.237	0.301	0.275	0.145	0.210	0.156
Head-on collision	0.052	0.066	0.081	0.043	0.032	0.024
Rear-end collision	0.278	0.354	0.260	0.137	0.292	0.217
Sideswipe collision	0.097	0.123	0.051	0.027	0.131	0.097
Other multiple-vehicle collision	0.042	0.053	0.050	0.026	0.033	0.025
Total multiple-vehicle crashes	0.706	0.898	0.717	0.378	0.698	0.519

Worksheet 2E -- Summary Results for Rural Two-Lane Two-Way Road Intersections		
(1)	(2)	(3)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes / year)
	(4) from Worksheet 2C	(8) from Worksheet 2C
Total	1.000	1.3
Fatal and Injury (FI)	0.415	0.5
Property Damage Only (PDO)	0.585	0.7

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method

Site type	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	Predicted average crash frequency (crashes/year)			Observedcrashes,$N_{\text {observed }}$(crashes/year)	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\mathrm{p} \text { /comb }}$
	$\mathrm{N}_{\text {predicted }}$ (TOTAL)	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & (\mathrm{PDO}) \\ & \hline \end{aligned}$			Equation A-8 $(6)^{*}(2)^{2}$	$\begin{aligned} & \text { Equation A-9 } \\ & \text { sart (6)*(2)) } \end{aligned}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \text { A-12 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_1	568.673	182.544	386.129	--	0.003	1,122.352	1.405	--	--	--	--	--
Segment_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 7	0.000	0.000	0.000	--	0.000	0.000	0.000					
Segment_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	568.673	182.544	386.129									
INTERSECTIONS												
Intersection_1	76.655	31.812	44.843	--	0.540	3173.073	6.434	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection Totals:	76.655	31.812	44.843									
COMBINED	645.329	214.356	430.973	0	--	4295.425	7.839	0.131	84.289	0.988	637.584	360.936

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
CMF for Lane Width	CMF for Shoulder Width and Type	CMF for Horizontal Curves	CMF for Superelevation	CMF for Grades	CMF for Driveway Density	CMF for Centerline Rumble Strips	CMF for Passing Lanes	CMF for Two-Way Left-Turn Lane	CMF for Roadside Design	CMF for Lighting	CMF for Automated Speed Enforcemen	Combined CMF
CMF 1r	CMF 2r	CMF 3r	CMF 4r	CMR 5r	CMF 6r	CMF 7r	CMF 8r	CMF 9r	CMF 10r	CMF 11r	CMF 12r	CMF comb
from Equation 10-11	$\begin{aligned} & \text { from Equation } \\ & 10-12 \end{aligned}$	from Equation 10-13	$\begin{array}{\|c\|} \hline \text { from Equations } \\ 10-14,10-15 \\ \text { or } 10-16 \end{array}$	$\begin{gathered} \text { from Table } \\ 10-11 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { from } \\ \text { Equation } 10-17 \\ 17 \end{array}$	from Section 10.7.1	$\begin{array}{c\|} \hline \text { from } \\ \text { Section } \\ \text { 10.7.1 } \end{array}$	from Equation $10-18 \& 10-$ 19	from Equation 10 - 20	from Equation 10-21	$\left\lvert\, \begin{gathered} \text { from Section } \\ 10.7 .1 \end{gathered}\right.$	$\begin{array}{\|c} \hline(1) \times(2) x \\ \ldots \\ x(11) \times(12) \end{array}$
1.00	1.17	1.07	1.11	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.385

Worksheet 1C -- Roadway Segment Crashes for Rural Two-Lane Two-Way Roadway Segments							
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	N spf rs	Overdispersion Parameter, k	Crash Severity Distribution	N spf rs by Severity Distribution	$\begin{gathered} \text { Combined } \\ \text { CMFs } \end{gathered}$	Calibration Factor, Cr	Predicted average crash frequency, \qquad
	from Equation 10-6	from Equation 10-7	from Table 10-3 (proportion)	(2)TOTAL \times (4)	(13) from Worksheet 1B		(5) $\mathrm{x}(6) \mathrm{x}(7)$
Total	323.387	0.00	1.000	323.387	1.38	1.00	447.774
Fatal and Injury (FI)	--	--	0.321	103.807	1.38	1.00	143.736
Property Damage Only (PDO)	--	--	0.679	219.579	1.38	1.00	304.039

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Type(total)	$\mathbf{N}_{\text {predicted rs }}$ (TOTAL) (crashes/year)	Proportion of Collision Type(fl)	$\mathbf{N}_{\text {predicted }}$ rs (FI) (crashes/year)	Proportion of Collision Type(PDO)	$\mathbf{N}_{\text {predicted }}$ ss (PDO) (crashes/year)
	$\begin{gathered} \text { from Table } \\ 10-4 \end{gathered}$	(8)total from Worksheet 1C	from Table 10-4	(8)f1 from Worksheet 1C	from Table 10-4	(8)poo from Worksheet 1C
Total	1.000	447.774	1.000	143.736	1.000	304.039
		(2) x (3) TOTAL		(4) $\mathrm{x}(5) \mathrm{FI}$		(6) x (7) PDo
SINGLE-VEHICLE						
Collision with animal	0.121	54.181	0.038	5.462	0.184	55.943
Collision with bicycle	0.002	0.896	0.004	0.575	0.001	0.304
Collision with pedestrian	0.003	1.343	0.007	1.006	0.001	0.304
Overturned	0.025	11.194	0.037	5.318	0.015	4.561
Ran off road	0.521	233.290	0.545	78.336	0.505	153.540
Other single-vehicle collision	0.021	9.403	0.007	1.006	0.029	8.817
Total single-vehicle crashes	0.693	310.308	0.638	91.703	0.735	223.469
MULTIPLE-VEHICLE						
Angle collision	0.085	38.061	0.100	14.374	0.072	21.891
Head-on collision	0.016	7.164	0.034	4.887	0.003	0.912
Rear-end collision	0.142	63.584	0.164	23.573	0.122	37.093
Sideswipe collision	0.037	16.568	0.038	5.462	0.038	11.553
Other multiple-vehicle collision	0.027	12.090	0.026	3.737	0.030	9.121
Total multiple-vehicle crashes	0.307	137.467	0.362	52.032	0.265	80.570

(1)	(2)	(3)	(4)	(5)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes $/ \mathrm{mi} /$ year)
	(4) from Worksheet 1C	(8) from Worksheet 1C		(3)/(4)
Total	1.000	447.8	68	6.6
Fatal and Injury (FI)	0.321	143.7	68	2.1
Property Damage Only (PDO)	0.679	304.0	68	4.5

Worksheet 2D -- Crashes by Severity Level and Collision Type for Rural Two-Lane Two-Way Road Intersections						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type	Proportion of Collision Typentotal	\mathbf{N} predicted int (TOTAL) (crashes/year)	Proportion of Collision Type(f)	\mathbf{N} predicted int (F) ((crashes/year)	Proportion of Collision Type(PDO)	N predicted int (PDO) ((crashes/year)
	$\begin{gathered} \text { from Table } \\ 10-6 \end{gathered}$	(8)total from Worksheet 2 C	from Table 10-6	(8)FI from Worksheet 2 C	from Table 10-6	(8)poo from Worksheet 2C
Total	1.000	1.272	1.000	0.528	1.000	0.744
		(2) \times (3) TOTAL		(4) \times (5) F		(6) x (7) PDo
SINGLE-VEHICLE						
Collision with animal	0.019	0.024	0.008	0.004	0.026	0.019
Collision with bicycle	0.001	0.001	0.001	0.001	0.001	0.001
Collision with pedestrian	0.001	0.001	0.001	0.001	0.001	0.001
Overturned	0.013	0.017	0.022	0.012	0.007	0.005
Ran off road	0.244	0.310	0.240	0.127	0.247	0.184
Other single-vehicle collision	0.016	0.020	0.011	0.006	0.020	0.015
Total single-vehicle crashes	0.294	0.374	0.283	0.149	0.302	0.225
M MULTIPLE-VEHICLE						
Angle collision	0.237	0.301	0.275	0.145	0.210	0.156
Head-on collision	0.052	0.066	0.081	0.043	0.032	0.024
Rear-end collision	0.278	0.354	0.260	0.137	0.292	0.217
Sideswipe collision	0.097	0.123	0.051	0.027	0.131	0.097
Other multiple-vehicle collision	0.042	0.053	0.050	0.026	0.033	0.025
Total multiple-vehicle crashes	0.706	0.898	0.717	0.378	0.698	0.519

Worksheet 2E -- Summary Results for Rural Two-Lane Two-Way Road Intersections		
(1)	(2)	(3)
Crash severity level	Crash Severity Distribution (proportion)	Predicted average crash frequency (crashes / year)
	(4) from Worksheet 2C	(8) from Worksheet 2C
Total	1.000	1.3
Fatal and Injury (FI)	0.415	0.5
Property Damage Only (PDO)	0.585	0.7

Worksheet 4A -- Predicted and Observed Crashes by Severity and Site Type Using the Project-Level EB Method

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Site type	Predicted average crash frequency (crashes/year)			$\begin{aligned} & \hline \text { Observed } \\ & \text { crashes, } \\ & \mathrm{N}_{\text {observed }} \\ & \text { (crashes/year) } \\ & \hline \end{aligned}$	Overdispersion Parameter, k	$\mathrm{N}_{\mathrm{w} 0}$	$\mathrm{N}_{\mathrm{w} 1}$	W_{0}	N_{0}	w_{1}	N_{1}	$\mathrm{N}_{\mathrm{p} / \text { comb }}$
	$\begin{aligned} & \mathrm{N}_{\text {predicted }} \\ & \text { (TOTAL) } \end{aligned}$	$\mathrm{N}_{\text {predicted }}$ (FI)	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted }} \\ & (\mathrm{PDO}) \end{aligned}$			$\begin{aligned} & \hline \text { Equation A-8 } \\ & (6)^{*}(2)^{2} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Equation A-9 } \\ \text { sqrt((6)* }(2)) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \text { A-12 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Equation } \\ \mathrm{A}-13 \\ \hline \end{gathered}$	$\begin{gathered} \text { Equation } \\ \mathrm{A}-14 \\ \hline \end{gathered}$
ROADWAY SEGMENTS												
Segment_1	822.114	263.899	558.215	--	0.003	2,345.670	1.689	--	--	--	--	--
Segment_2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment 6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment_7	0.000	0.000	0.000	--	0.000	0.000	0.000					
Segment_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Segment Totals:	822.114	263.899	558.215									
[INTERSECTIONS												
Intersection_1	114.075	47.341	66.734	---	0.540	7027.112	7.849	--	--	--	--	--
Intersection 2	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_3	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 4	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection 5	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_6	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_7	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection_8	0.000	0.000	0.000	--	0.000	0.000	0.000	--	--	--	--	--
Intersection Totals:	114.075	47.341	66.734									
COMBINED	936.189	311.240	624.949	0	--	9372.782	9.538	0.091	85.018	0.990	926.747	505.883

Stakeholder Resolutions \& Letters of Support

RESOLUTION NO. 2020-02

A RESOLUTION BY THE COUNTY COMMISSION OF WEBSTER COUNTY, MISSOURI, RECOGNIZING THE SUPPORT FOR THE US 60 CORRIDOR STUDY

WHEREAS, the Webster County Commission contracted a study of the US 60 Corridor within the Webster County Limits; and

WHEREAS, Webster County partnered with the Missouri Department of Transportation, BNSF Railway, and the Southwest Missouri Council of Governments to hire a consultant to perform the US 60 Corridor Study, and

WHEREAS, the US 60 Corridor Study has sought the input of local stakeholders and citizens, including emergency responders, businesses and landowners, municipal leaders, and representatives of affected school districts; and

WHEREAS, the US 60 Corridor Study developed a conceptual plan that recommends roadway and railway improvements as presented in the US 60 Corridor Master Plan and sets forth a plan to promote potential project funding and implementation opportunities, and

NOW THEREFORE BE IT RESOLVED by the County Commission of Webster County, Missouri that the Commission provides its full support of the recommendations outlined in the US 60 Corridor Master Plan and recognizes the transparent public involvement process, and realizes the benefits of improved safety, access, resiliency and economic opportunities set forth by the US 60 Corridor Study.

Approved this 24th day of February, 2020.

Paul Ipock,
Presiding Commissioner

Randy Owens,
Southern District Commissioner

ATTEST:

RESOLUTION NO. 031620A

A RESOLUTION BY THE BOARD OF ALDERMEN OF THE CITY OF ROGERSVILLE, MISSOURI, RECOGNIZING THE SUPPORT FOR THE US 60 CORRIDOR STUDY

WHEREAS, the Webster County Commission contracted a study of the US 60 Corridor within the Webster County Limits; and

WHEREAS, Webster County partnered with the Missouri Department of Transportation, BNSF Railway, and the Southwest Missouri Council of Governments to hire a consultant to perform the US 60 Corridor Study, and

WHEREAS, the US 60 Corridor Study has sought the input of local citizens and stakeholders - including emergency responders, businesses and landowners, City of Rogersville leadership, and the Logan-Rogersville R-8 School District; and

WHEREAS, the US 60 Corridor Study developed a conceptual plan that recommends roadway and railway improvements as presented in the US 60 Corridor Master Plan and sets forth a plan to promote potential project funding and implementation opportunities, and

NOW THEREFORE BE IT RESOLVED by the Board of Aldermen of the City of
Rogersville, Missouri that the City of Rogersville provides its full support of the recommendations outlined in the US 60 Corridor Master Plan and recognizes the transparent public involvement process, and realizes the benefits of improved safety, access, resiliency and economic opportunities set forth by the US 60 Corridor Study.

RESOLUTION NO. 2020

A RESOLUTION BY THE BOARD OF ALDERMEN OF THE CITY OF FORDLAND, MISSOURI, RECOGNIZING THE SUPPORT FOR THE US 60 CORRIDOR STUDY

WHEREAS, the Webster County Commission contracted a study of the US 60 Corridor within the Webster County Limits; and

WHEREAS, Webster County partnered with the Missouri Department of Transportation, BNSF Railway, and the Southwest Missouri Council of Governments to hire a consultant to perform the US 60 Corridor Study, and

WHEREAS, the US 60 Corridor Study has sought the input of local stakeholders and citizens, including emergency responders, businesses and landowners, City of Fordland leadership, and the Fordland R-3 School District; and

WHEREAS, the US 60 Corridor Study developed a conceptual plan that recommends roadway and railway improvements as presented in the US 60 Corridor Master Plan and sets forth a plan to promote potential project funding and implementation opportunities, and

NOW THEREFORE BE IT RESOLVED by the Board of Aldermen of the City of Fordland, Missouri that the City of Fordland provides its full support of the recommendations outlined in the US 60 Corridor Master Plan and recognizes the transparent public involvement process, and realizes the benefits of improved safety, access, resiliency and economic opportunities set forth by the US 60 Corridor Study.

Read twice and passed by the board of alderman of Fordland, Missouri, this $28^{\text {th }}$ day of January, 2020.

Donald Burks, Mayor

Alderman:

Ken Bowers:

Kathy Bagley:

Attest:

Approved by the Mayor of the City of Fordland, Missouri, on this $28^{\text {th }}$ day of January, 2020

Donald Burks

RESOLUTION NO. 03092020

A RESOLUTION BY THE BOARD OF TRUSTEES OF THE VILLAGE OF DIGGINS, MISSOURI, RECOGNIZING THE SUPPORT FOR THE US 60 CORRIDOR STUDY

WHEREAS, the Webster County Commission contracted a study of the US 60 Corridor within the Webster County Limits; and

WHEREAS, Webster County partnered with the Missouri Department of Transportation, BNSF Railway, and the Southwest Missouri Council of Governments to hire a consultant to perform the US 60 Corridor Study, and

WHEREAS, the US 60 Corridor Study has sought the input of local stakeholders and citizens, including emergency responders, businesses and landowners, Village of Biggins leadership, and the Seymour R-2 School District; and

WHEREAS, the US 60 Corridor Study developed a conceptual plan that recommends roadway and railway improvements as presented in the US 60 Corridor Master Plan and sets forth a plan to promote potential project funding and implementation opportunities, and

NOW THEREFORE BE IT RESOLVED by the Board of Trustees of the Village of Digging, Missouri that the Village of Biggins provides its full support of the recommendations outlined in the US 60 Corridor Master Plan and recognizes the transparent public involvement process, and realizes the benefits of improved safety, access, resiliency and economic opportunities set forth by the US 60 Corridor Study.

Done this the $9^{\text {th }}$ day of March, 2020.

Attest:

Barbara Holmes
Chair, Board of Trustees

RESOLUTION NO. 2020-1

A RESOLUTION BY THE BOARD OF ALDERMEN OF THE CITY OF SEYMOUR, MISSOURI, RECOGNIZING THE SUPPORT FOR THE US 60 CORRIDOR STUDY

WHEREAS, the Webster County Commission contracted a study of the US 60 Corridor within the Webster County Limits; and

WHEREAS, Webster County partnered with the Missouri Department of Transportation, BNSF Railway, and the Southwest Missouri Council of Governments to hire a consultant to perform the US 60 Corridor Study, and

WHEREAS, the US 60 Corridor Study has sought the input of local stakeholders and citizens, including emergency responders, businesses and landowners, City of Seymour leadership, and the Seymour R-2 School District; and

WHEREAS, the US 60 Corridor Study developed a conceptual plan that recommends roadway and railway improvements as presented in the US 60 Corridor Master Plan and sets forth a plan to promote potential project funding and implementation opportunities, and

NOW THEREFORE BE IT RESOLVED by the Board of Aldermen of the City of Seymour, Missouri that the City of Seymour provides its full support of the recommendations outlined in the US 60 Corridor Master Plan and recognizes the transparent public involvement process, and realizes the benefits of improved safety, access, resiliency and economic opportunities set forth by the US 60 Corridor Study.

Mayor Richard Vinson
City of Seymour, Missouri

[^0]: 3
 https://www.fhwa.dot.gov/freighteconomy/
 American Association of Railroads (June 2019)

[^1]: 7 AASHTO, Highway Capacity Manual, Volume 2 (2010).
 8 CMT Existing Safety Analysis
 9 CMT Proposed Safety Analysis

[^2]: 11 USDOT Railroad-Highway Grade Crossing Handbook (2007)
 12 Missouri Exposure Index Formula (https://library.modot.mo.gov/RDT/reports/Ri01010/RDT03017.pdf)
 13 CMT multiplier (adopted from USDOT Accident Prediction)
 14 BNSF Railway Near-Miss Reports (August 2019)

[^3]: 15 https://library.modot.mo.gov/RDT/reports/Ri01010/RDT03017.pdf
 16 https://safety.fhwa.dot.gov/hsip/xings/com_roaduser/07010/sec03.cfm

[^4]: 18
 18 ESMI 2019
 192017 ACS, Census

[^5]: Figure 11. U.S. 60 Corridor Location Quotient Change (2019-2029)

[^6]: *Projected Jobs divided by Employees per Acre (per Table 16)

[^7]: ${ }^{1}$ Assumes no savings until Year 3 after Contstruction

[^8]: ${ }^{1}$ Assumes no savings until Year 3 after Contstruction

[^9]: ${ }^{1}$ Assumes no operations and maintenance savings until Year 3 in Build Scenario

[^10]: ${ }^{1}$ Assumes no operations and maintenance savings until Year 3 in Build Scenario

[^11]: ${ }^{1}$ Assumes no operations and maintenance savings until Year 3 in Build Scenario

[^12]: ${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

[^13]: ${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

[^14]: ${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

[^15]: ${ }^{1}$ It is assumed that benefits will be realized starting in Year 3 when construction is completed

[^16]: ${ }^{1}$ Assumes no operations and maintenance costs until Year 3 in Build Scenario

[^17]: ${ }^{1}$ Assumes no operations and maintenance costs until Year 3 in Build Scenario

[^18]: ${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

[^19]: ${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

[^20]: ${ }^{1}$ Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway Guide Crossing Handbook-Section 3 Assessment of

[^21]: ${ }^{1}$ Derived from Appendix Table 1b

[^22]: ${ }^{1}$ Derived from Appendix Table 1b

[^23]: Source: Crash Prediction based on U.S. Department of Transportation Accident Prediction Model from Railroad-Highway
 ${ }^{1}$ Derived from Appendix Table 1b

[^24]: 1. The United States Census Bureau 2017 (ACS Data)
[^25]: 2. https://www.fhwa.dot.gov/infrastructure/longest.cfm
 3. CMT U.S. 60 Corridor Study Traffic Counts
 4. American Association of Railroads (June 2019)
[^26]: 7. Webster Co. U.S. 60 Corridor Study, Fordland Public Meeting \#1
 8. Webster Co. U.S. 60 Corridor Study, Seymour Public Meeting \#2
[^27]: 9. Webster County 911 Services
 10. Webster County Commission
[^28]: 11. NWS Advanced Hydrologic Prediction Service-https://water.weather.gov ahps2/hydrograph.php?gage=hzlm7\&wfo=sgf
 12. "Historic Flooding Shuts Down I-44" Ozarks First Newspage. April 2017
 13. Association of American Railroads. June 2019.
 14. USDOT Freight Shipments Projection (August 2014).
 15. ESRI 2019; ESMI 2019; Census
[^29]: ${ }^{1}$ https://www.transportation.gov/sites/dot.gov/files/2020-01/benefit-cost-analysis-guidance-2020 0.pdf

[^30]: ${ }^{2}$ See Tables 5-8

[^31]: ${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps.
 ${ }^{2}$ Traffic Routing assumed if 100% ADT was rerouted for 24 Hours

[^32]: ${ }^{1}$ Traffic Routing Times \& Distances retrieved from Google Maps. Travel Delays assumed to increase linearly with ADT
 ${ }^{2}$ Traffic Routing assumed if 100% ADT was rerouted for 24 Hours
 ${ }^{3}$ Average Reroute Delay per Vehicle assumed to annually increase linearly with ADT

